Skip to main content
Log in

Molecular Docking and Antibacterial Studies of Pyranopyrazole Derivatives Synthesized Using [Pap-Glu@Chi] Biocatalyst Through a Greener Approach

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present work, papain enzyme was immobilized on a polymer support chitosan through a linkage of glutaraldehyde to form the [Pap-Glu@Chi] biocatalyst through the covalent bonding method. The immobilization of papain on Chitosan was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) which revealed the change in morphology of chitosan due to immobilization of papain through glutaraldehyde. Thus prepared heterogeneous biocatalyst was used for the four-component synthesis of pyranopyrazole derivatives by the reaction of substituted aromatic aldehydes, malononitrile, ethylacetoacetate and hydrazine hydrate affording excellent yields within short reaction times at moderate temperature. The catalyst exhibited significant activity up to six cycles. Synthesized compounds were checked for their molecular docking activity using AutoDock Vina against the bacterial protein receptors (PDB code 2VF5 and 1BAG) obtained from the RCSB Protein Data Bank. Significant binding energy values obtained from docking studies revealed good interaction between synthesized compounds and bacterial protein receptor. Synthesized compounds were tested against human pathogenic bacterial strains Escherichia coli, Salmonella typhi, Bacillus subtilis, Pseudomonas aeruginosa along with Gentamicine as a reference antibiotic using disk diffusion method. The compounds were found to exhibit moderate-to-high antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A.: Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem. 125, 101–116 (2017). https://doi.org/10.1016/j.ejmech.2016.09.021

    Article  Google Scholar 

  2. Reddy, G.M.; Garcia, J.R.; Zyryanov, G.V.; Sravya, G.; Reddy, N.B.: Pyranopyrazoles as efficient antimicrobial agents: green, one pot and multicomponent approach. Bioorg. Chem. 82, 324–331 (2019). https://doi.org/10.1016/j.bioorg.2018.09.035

    Article  Google Scholar 

  3. Shahbazi, S.; Ghasemzadeh, M.A.; Shakib, P.; Zolfaghari, M.R.; Bahmani, M.: Synthesis and antimicrobial study of 1,4-dihydropyrano[2,3-c]pyrazole derivatives in the presence of amino-functionalized silica-coated cobalt oxide nanostructures as catalyst. Polyhedron 170, 172–179 (2019). https://doi.org/10.1016/j.poly.2019.04.063

    Article  Google Scholar 

  4. Reddy, G.M.; Garcia, J.R.; Reddy, V.H.; Kumari, A.K.; Zyryanov, G.V.; Yuvaraja, G.: An efficient and green approach: One pot, multi component, reusable catalyzed synthesis of pyranopyrazoles and investigation of biological assays. J. Saudi Chem. Soc. 23, 263–273 (2019). https://doi.org/10.1016/j.jscs.2018.07.003

    Article  Google Scholar 

  5. Abdelgaleil, S.A.M.; Badawy, Y.M.: Herbicidal, insecticidal and structure-activity relationship studies on pyranopyrazole and oxinobispyrazole derivatives. Alex. Sci. Exch. J. Int. Q. J. Sci. Agric. Environ. 37, 572–580 (2016). https://doi.org/10.21608/asejaiqjsae.2016.2531

    Article  Google Scholar 

  6. Kassem, E.M.; El-Sawy, E.R.; Abd-Alla, H.I.; Mandour, A.H.; Abdel-Mogeed, D.; El-Safty, M.M.: Synthesis of certain new fused pyranopyrazole and pyranoimidazole incorporated into 8-hydroxyquinoline through a sulfonyl bridge at position 5 with evaluation of their in-vitro antimicrobial and antiviral activities. Egypt. Pharm. J. (2012). https://doi.org/10.7123/01.EPJ.0000421482.33940.0b

    Article  Google Scholar 

  7. Faidallah, H.M.; Rostom, S.A.F.: Synthesis, anti-inflammatory activity, and cox-1/2 inhibition profile of some novel non-acidic polysubstituted pyrazoles and pyrano[2,3-c]pyrazoles. Arch. Pharm. Weinheim (2017). https://doi.org/10.1002/ardp.201700025

    Article  Google Scholar 

  8. Shamroukh, A.H.; Zaki, M.E.A.; Morsy, E.M.H.; Abdel-Motti, F.M.; Abdel-Megeid, F.M.E.: Synthesis of pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidine derivatives for antiviral evaluation. Arch. Pharm. (Weinheim) 340, 236–243 (2007). https://doi.org/10.1002/ardp.200700005

    Article  Google Scholar 

  9. Sharma, A.; Chowdhury, R.; Dash, S.; Pallavi, B.; Shukla, P.: Fast microwave assisted synthesis of pyranopyrazole derivatives as new anticancer agents.

  10. Ramtekkar, R.; Kumarvel, K.; Vasuki, G.; Sekar, K.; Krishna, R.: Computer-aided drug design of pyranopyrazoles and related compounds for checkpoint kinase-1. Lett. Drug Des. Discov. 6, 579–584 (2009). https://doi.org/10.2174/157018009789353455

    Article  Google Scholar 

  11. Soleimani, E.; Jafarzadeh, M.; Norouzi, P.; Dayou, J.; Sipaut, C.S.; Mansa, R.F.; Saei, P.: Synthesis of pyranopyrazoles using magnetically recyclable heterogeneous iron oxide-silica core-shell nanocatalyst. J. Chin. Chem. Soc. 62, 1155–1162 (2015). https://doi.org/10.1002/jccs.201400387

    Article  Google Scholar 

  12. Aliabadi, R.S.; Mahmoodi, N.O.: Green and efficient synthesis of pyranopyrazoles using [bmim][OH-] as an ionic liquid catalyst in water under microwave irradiation and investigation of their antioxidant activity. RSC Adv. 6, 85877–85884 (2016). https://doi.org/10.1039/c6ra17594e

    Article  Google Scholar 

  13. Parshad, M.; Verma, V.; Kumar, D.: Iodine-mediated efficient synthesis of pyrano[2,3-c]pyrazoles and their antimicrobial activity. Monatshefte fur Chemie. 145, 1857–1865 (2014). https://doi.org/10.1007/s00706-014-1250-5

    Article  Google Scholar 

  14. De Luca, M.; Ioele, G.; Ragno, G.: 1,4-dihydropyridine antihypertensive drugs: Recent advances in photostabilization strategies. Pharmaceutics 11, 1–13 (2019). https://doi.org/10.3390/pharmaceutics11020085

    Article  Google Scholar 

  15. Mecadon, H.; Rohman, M.R.; Kharbangar, I.; Laloo, B.M.; Kharkongor, I.; Rajbangshi, M.; Myrboh, B.: L-Proline as an efficicent catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in water. Tetrahedron Lett. 52, 3228–3231 (2011). https://doi.org/10.1016/j.tetlet.2011.04.048

    Article  Google Scholar 

  16. Shestopalov, A.M.; Emeliyanova, Y.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Niazimbetova, Z.I.; Evans, D.H.: Cross-condensation of derivatives of cyanoacetic acid and carbonyl compounds. Part 1: single-stage synthesis of 1′-substituted 6-amino-spiro-4-(piperidine-4′)-2H,4H-pyrano[2,3-c] pyrazole-5-carbonitriles. Tetrahedron 59, 7491–7496 (2003). https://doi.org/10.1016/S0040-4020(03)01178-5

    Article  Google Scholar 

  17. Gogoi, S.; Zhao, C.G.: Organocatalyzed enantioselective synthesis of 6-amino-5-cyanodihydropyrano[2,3-c]pyrazoles. Tetrahedron Lett. 50, 2252–2255 (2009). https://doi.org/10.1016/j.tetlet.2009.02.210

    Article  Google Scholar 

  18. Ebrahimi, J.; Mohammadi, A.; Pakjoo, V.; Bahramzade, E.; Habibi, A.: Highly efficient solvent-free synthesis of pyranopyrazoles by a Brønsted-acidic ionic liquid as a green and reusable catalyst. J. Chem. Sci. 124, 1013–1017 (2012). https://doi.org/10.1007/s12039-012-0310-9

    Article  Google Scholar 

  19. Pan, Y.; Liu, X.; Zhang, W.; Liu, Z.; Zeng, G.; Shao, B.; Liang, Q.; He, Q.; Yuan, X.; Huang, D.; Chen, M.: Advances in photocatalysis based on fullerene C60 and its derivatives: properties, mechanism, synthesis, and applications. Appl. Catal. B Environ. 265, 118579 (2020). https://doi.org/10.1016/j.apcatb.2019.118579

    Article  Google Scholar 

  20. Liu, Z.; Jiang, Y.; Liu, X.; Zeng, G.; Shao, B.; Liu, Y.; Liu, Y.; Zhang, W.; Yan, M.; He, X.: Silver chromate modified sulfur doped graphitic carbon nitride microrod composites with enhanced visible-light photoactivity towards organic pollutants degradation. Compos. Part B Eng. 173, 106918 (2019). https://doi.org/10.1016/j.compositesb.2019.106918

    Article  Google Scholar 

  21. Pilz, R.; Hammer, E.; Schauer, F.; Kragl, U.: Laccase-catalysed synthesis of coupling products of phenolic substrates in different reactors. Appl. Microbiol. Biotechnol. 60, 708–712 (2003). https://doi.org/10.1007/s00253-002-1181-7

    Article  Google Scholar 

  22. Zanette, A.F.; Zampakidi, I.; Sotiroudis, G.T.; Zoumpanioti, M.; Leal, I.C.R.; De Souza, R.O.M.A.; Cardozo-Filho, L.; Xenakis, A.: Chemo-enzymatic epoxidation catalyzed by C. antarctica lipase immobilized in microemulsion-based organogels. J. Mol. Catal. B Enzym. 107, 89–94 (2014). https://doi.org/10.1016/j.molcatb.2014.05.013

    Article  Google Scholar 

  23. Jahangiri, A.; Møller, A.H.; Danielsen, M.; Madsen, B.; Joernsgaard, B.; Vaerbak, S.; Adlercreutz, P.; Dalsgaard, T.K.: Hydrophilization of bixin by lipase-catalyzed transesterification with sorbitol. Food Chem. 268, 203–209 (2018). https://doi.org/10.1016/j.foodchem.2018.06.085

    Article  Google Scholar 

  24. Johnson, W.; Johnson, W.; Makame, Y.M.M.; Mkayula, L.L.: Immobilization of trypsin onto macroporous monolithic poly(epoxy-acrylamide) cryogels. TaJONAS Tanzania J. Nat. Appl. Sci. 2, 382–392 (2012)

    Google Scholar 

  25. Morrill, J.; Månberger, A.; Rosengren, A.; Naidjonoka, P.; von Freiesleben, P.; Krogh, K.B.R.M.; Bergquist, K.E.; Nylander, T.; Karlsson, E.N.; Adlercreutz, P.; Stålbrand, H.: β-Mannanase-catalyzed synthesis of alkyl mannooligosides. Appl. Microbiol. Biotechnol. 102, 5149–5163 (2018). https://doi.org/10.1007/s00253-018-8997-2

    Article  Google Scholar 

  26. Akansha, A.; Deepali, A.; Anamika, B.; Kumar, K.V.: A mild and environmentally benign synthesis of benzimidazoles: relevance to the pectin hetero polysaccharide as a catalyst. Res. J. Recent Sci. 3, 64–67 (2014)

    Google Scholar 

  27. Hu, W.; Guan, Z.; Deng, X.; He, Y.H.: Enzyme catalytic promiscuity: the papain-catalyzed Knoevenagel reaction. Biochimie 94, 656–661 (2012). https://doi.org/10.1016/j.biochi.2011.09.018

    Article  Google Scholar 

  28. Guo, J.T.; Xiang, Y.; Guan, Z.; He, Y.H.: Papain-catalyzed aldol reaction for the synthesis of trifluoromethyl carbinol derivatives. J. Mol. Catal. B Enzym. 131, 55–64 (2016). https://doi.org/10.1016/j.molcatb.2016.05.014

    Article  Google Scholar 

  29. Yazawa, K.; Numata, K.: Papain-catalyzed synthesis of polyglutamate containing a nylon monomer unit. Polym. Basel (2016). https://doi.org/10.3390/polym8050194

    Article  Google Scholar 

  30. Ardila-Fierro, K.J.; Crawford, D.E.; Körner, A.; James, S.L.; Bolm, C.; Hernández, J.G.: Papain-catalysed mechanochemical synthesis of oligopeptides by milling and twin-screw extrusion: application in the Juliá-Colonna enantioselective epoxidation. Green Chem. 20, 1262–1269 (2018). https://doi.org/10.1039/c7gc03205f

    Article  Google Scholar 

  31. Xiao, S.; Cheng, M.; Zhong, H.; Liu, Z.; Liu, Y.; Yang, X.; Liang, Q.: Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: a review. Chem. Eng. J. 384, 123265 (2020). https://doi.org/10.1016/j.cej.2019.123265

    Article  Google Scholar 

  32. Shao, B.; Wang, J.; Liu, Z.; Zeng, G.; Tang, L.; Liang, Q.; He, Q.; Wu, T.; Liu, Y.; Yuan, X.: Ti3C2T: X MXene decorated black phosphorus nanosheets with improved visible-light photocatalytic activity: experimental and theoretical studies. J. Mater. Chem. A. 8, 5171–5185 (2020). https://doi.org/10.1039/c9ta13610j

    Article  Google Scholar 

  33. Agrwal, A.; Kasana, V.: [Fesipmim]Cl as highly efficient and reusable catalyst for solventless synthesis of dihydropyridine derivatives through Hantzsch reaction. J. Chem. Sci. (2020). https://doi.org/10.1007/s12039-020-01770-9

    Article  Google Scholar 

  34. Worsfold, P.J.: Classification and chemical characteristics of immobilized enzymes. Pure Appl. Chem. 67, 597–600 (1995). https://doi.org/10.1351/pac199567040597

    Article  Google Scholar 

  35. Straathof, A.J.J.: Applied Biocatalysis. CRC Press, Boca Raton (2014)

    Google Scholar 

  36. Silva, D.F.; Rosa, H.; Carvalho, A.F.A.; Oliva-Neto, P.: Immobilization of papain on chitin and chitosan and recycling of soluble enzyme for deflocculation of Saccharomyces cerevisiae from bioethanol distilleries. Enzyme Res. (2015). https://doi.org/10.1155/2015/573721

    Article  Google Scholar 

  37. Chiou, R.Y.; Beuchat, L.R.: Characteristics and application of immobilized papain in a continuous-flow reactor. Biotechnol. Appl. Biochem. 8, 529–536 (1986)

    Google Scholar 

  38. Homaei, A.A.; Sajedi, R.H.; Sariri, R.; Seyfzadeh, S.; Stevanato, R.: Cysteine enhances activity and stability of immobilized papain. Amino Acids 38, 937–942 (2010). https://doi.org/10.1007/s00726-009-0302-3

    Article  Google Scholar 

  39. Homaei, A.; Barkheh, H.; Sariri, R.; Stevanato, R.: Immobilized papain on gold nanorods as heterogeneous biocatalysts. Amino Acids 46, 1649–1657 (2014). https://doi.org/10.1007/s00726-014-1724-0

    Article  Google Scholar 

  40. Alpay, P.; Uygun, D.A.: Usage of immobilized papain for enzymatic hydrolysis of proteins. J. Mol. Catal. B Enzym. 111, 56–63 (2015). https://doi.org/10.1016/j.molcatb.2014.11.001

    Article  Google Scholar 

  41. Neochoritis, C.G.; Zhao, T.; Dömling, A.: Tetrazoles via multicomponent reactions. Chem. Rev. (2019). https://doi.org/10.1021/acs.chemrev.8b00564

    Article  Google Scholar 

  42. Biggs-Houck, J.E.;Younai, A.; Shaw, J.T.: Recent advances in multicomponent reactions for diversity-oriented synthesis, (2010)

  43. Fekri, L.Z.; Nikpassand, M.; Shariati, S.; Aghazadeh, B.; Zarkeshvari, R.; Norouz Pour, N.: Synthesis and characterization of amino glucose-functionalized silica-coated NiFe 2 O 4 nanoparticles: a heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of 2,4,5–trisubstituted imidazoles, benzo[d]imidazoles, benzo[d] oxazoles and azo-linked benzo[d]oxazoles. J. Organomet. Chem. (2018). https://doi.org/10.1016/j.jorganchem.2018.07.008

    Article  Google Scholar 

  44. Dömling, A.; Ugi, I.: Multicomponent reactions with isocyanides. Angew Chemie. 39, 3168–3210 (2000). https://doi.org/10.1002/1521-3773(20000915)39:18%3c3168::aid-anie3168%3e3.0.co;2-u

    Article  Google Scholar 

  45. Berman, H.M.: The protein data bank/biopython. Presentation 28, 235–242 (2000). https://doi.org/10.1093/nar/28.1.235

    Article  Google Scholar 

  46. Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H.: PubChem substance and compound databases. Nucleic Acids Res. 44, D1202–D1213 (2016). https://doi.org/10.1093/nar/gkv951

    Article  Google Scholar 

  47. ACD/ChemSketch Freeware: Advanced Chemistry Development, Inc., Toronto, ON, Canada. (2016)

  48. Bienz, S.: ChemDraw ® Practical Classes in Chemistry

  49. Ding, L.; Yao, Z.; Li, T.; Mande, Q.; Yue, Q.; Chai, J.: Synthesis of macroporous polymer carrier and immobilization of papain. Iran. Polym. J. 12, 491–495 (2003)

    Google Scholar 

  50. Pintilie, L.; Stefaniu, A.: In Silico Drug Design and Molecular Docking Studies of Some Quinolone Compound . In: Molecular Docking and Molecular Dynamics [Working Title]. IntechOpen (2019)

  51. Qiao, L.; Cai, P.P.; Shen, Z.H.; Wu, H.K.; Tan, C.X.; Weng, J.Q.; Liu, X.H.: Crystal structure and molecular docking studies of new pyrazole-4-carboxamides. Heterocycl. Commun. 25, 66–72 (2019). https://doi.org/10.1515/hc-2019-0012

    Article  Google Scholar 

  52. Huang, S.-Y.; Zou, X.: Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 11, 3016–3034 (2010). https://doi.org/10.3390/ijms11083016

    Article  Google Scholar 

  53. Liu, Z.; Liu, Y.; Zeng, G.; Shao, B.; Chen, M.; Li, Z.; Jiang, Y.; Liu, Y.; Zhang, Y.; Zhong, H.: Application of molecular docking for the degradation of organic pollutants in the environmental remediation: a review, (2018)

  54. Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998). https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14%3c1639::AID-JCC10%3e3.0.CO;2-B

    Article  Google Scholar 

  55. Thomsen, R.; Christensen, M.H.: MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49, 3315–3321 (2006). https://doi.org/10.1021/jm051197e

    Article  Google Scholar 

  56. Trott, O.; Olson, A.: Autodock vina: improving the speed and accuracy of docking. J. Comput. Chem. 31, 455–461 (2010). https://doi.org/10.1002/jcc.21334.AutoDock

    Article  Google Scholar 

  57. de Magalhães, C.S.; Barbosa, H.J.C.; Dardenne, L.E.: Selection-insertion schemes in genetic algorithms for the flexible ligand docking problem. Presented at the (2004)

  58. Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D.: Improved protein-ligand docking using GOLD. Proteins Struct. Funct. Genet. 52, 609–623 (2003). https://doi.org/10.1002/prot.10465

    Article  Google Scholar 

  59. Cotter, G.; Adley, C.C.: Comparison and evaluation of antimicrobial susceptibility testing of enterococci performed in accordance with six national committee standardized disk diffusion procedures. J. Clin. Microbiol. 39, 3753–3756 (2001). https://doi.org/10.1128/JCM.39.10.3753-3756.2001

    Article  Google Scholar 

  60. Chavan, H.V.; Babar, S.B.; Hoval, R.U.; Bandgar, B.P.: Rapid one-pot, four component synthesis of pyranopyrazoles using heteropolyacid under solvent-free condition. Bull. Korean Chem. Soc. 32(11), 3963–3966 (2011). https://doi.org/10.5012/BKCS.2011.32.11.3963

    Article  Google Scholar 

  61. Vikram Sin, I.; Mishra, S.: Molecular Docking studies of benzamide derivatives for PfDHODH inhibitor as potent antimalarial agent. Am. J. Biochem. Mol. Biol. 9, 1–6 (2019). https://doi.org/10.3923/ajbmb.2019.1.6

    Article  Google Scholar 

  62. Varma, A.K.; Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.: Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of Drug-Designing. PLoS ONE (2010). https://doi.org/10.1371/journal.pone.0012029

    Article  Google Scholar 

  63. Horowitz, S.; Trievel, R.C.: Carbon-oxygen hydrogen bonding in biological structure and function. J. Biol. Chem. 287, 41576–41582 (2012). https://doi.org/10.1074/jbc.R112.418574

    Article  Google Scholar 

  64. Reddy, G.M.; Kumari, A.K.; Reddy, V.H.; Garcia, J.R.: Novel pyranopyrazole derivatives comprising a benzoxazole core as antimicrobial inhibitors: design, synthesis, microbial resistance and machine aided results. Bioorg. Chem. 100, 103908 (2020). https://doi.org/10.1016/j.bioorg.2020.103908

    Article  Google Scholar 

  65. Zonouz, A.M.; Eskandari, I.; Khavasi, H.R.: A green and convenient approach for the synthesis of methyl 6-amino-5-cyano-4-aryl-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates via a one-pot, multi-component reaction in water. Tetrahedron Lett. 53, 5519–5522 (2012). https://doi.org/10.1016/j.tetlet.2012.08.010

    Article  Google Scholar 

  66. Wu, M.; Feng, Q.; Wan, D.; Ma, J.: CTACl AS catalyst for four-component, one-pot synthesis of pyranopyrazole derivatives in aqueous medium. Synth. Commun. 43, 1721–1726 (2013). https://doi.org/10.1080/00397911.2012.666315

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank G. B. Pant University of Agriculture and Technology to provide necessary research facilities, KIET Group of Institutions for constant help and support, IIT Ropar for providing NMR spectra, ISFAL Moga for Providing IR spectra, Mr. M. P. Singh, College of Veterinary, GBPUAT for providing SEM and Dr. Vijendra Pratap, College of Veterinary, GBPUAT for his constant help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akansha Agrwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrwal, A., Pathak, R.K. & Kasana, V. Molecular Docking and Antibacterial Studies of Pyranopyrazole Derivatives Synthesized Using [Pap-Glu@Chi] Biocatalyst Through a Greener Approach. Arab J Sci Eng 47, 347–363 (2022). https://doi.org/10.1007/s13369-021-05377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05377-1

Keywords

Navigation