Skip to main content
Log in

A Novel Smooth Super-Twisting Control Method for Perturbed Nonlinear Double-Pendulum-Type Overhead Cranes

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The double-pendulum (DP) phenomenon, effectuated by the fact that the payload configuration and the chain length between the hook and the payload are usually unknown, is a typical issue in actual cranes. This phenomenon is considered in the current study to enhance tracking accuracy and sway regulation for overhead cranes subject to perturbations and multiple frictions. A novel smooth super-twisting algorithm hybridized with the integral sliding mode control (ISMC) is proposed to solve the problems. The closed-loop system’s finite time stability has been examined using a strict quadratic Lyapunov function. Compared to an existing modified super-twisting algorithm (MSTC), it has been shown that the proposed algorithm mitigates both the sliding surface overshoot and the initial peaking of the control effort that can be encountered using the MSTC algorithm. Furthermore, simulation experiments and error analysis show improved effectiveness of the proposed technology against the existing MSTC and the conventional ISMC technologies. The paper contribution primarily dwells on devising a novel structure of super-twisting algorithm that ensures the nonlinear perturbed DP overhead crane’s desired performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Romero, J.G.; Donaire, A.; Ortega, R.; Borjad, P.: Global stabilisation of underactuated mechanical systems via PID passivity-based control. Automatica 96, 178–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Shah, I.; Rehman, F.U.: Smooth higher-order sliding mode control of a class of underactuated mechanical systems. Arab. J. Sci. Eng. 42, 5147–5164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baklouti, A.; Nguyen, N.; Mhenni, F.; Choley, J.; Mlika, A.: Dynamic fault tree generation for safety-critical systems within a systems engineering approach. IEEE Syst. J. 14(1), 1512–1522 (2020)

    Article  Google Scholar 

  4. Xueyan, X.; Jinkun, L.: PDE modelling and vibration control of overhead crane bridge with unknown control directions and parametric uncertainties. IET Control Theory Appl. 14(1), 116–126 (2020)

    Article  Google Scholar 

  5. Shengzeng, Z.; Xiongxiong, H.; Haiyue, Z.; Qianga, C.; Yuanjinga, F.: Partially saturated coupled-dissipation control for underactuated overhead cranes. Mech. Syst. Signal Process. 136, 1–17 (2020)

    Google Scholar 

  6. Tuan, L.A.; Lee, S.G.: 3D cooperative control of tower cranes using robust adaptive techniques. J. Franklin Inst. 354(18), 8333–8357 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. La, V.D.; Nguyen, K.T.: Combination of input shaping and radial spring-damper to reduce tridirectional vibration of crane payload. Mech. Syst. Signal Process. 116, 310–321 (2019)

    Article  Google Scholar 

  8. Chen, H.; Fang, Y.; Sun, N.: Optimal trajectory planning and tracking control method for overhead cranes. IET Control Theory Appl. 10(6), 692–699 (2016)

    Article  MathSciNet  Google Scholar 

  9. Wu, Z.; Xia, X.: Optimal motion planning for overhead cranes. IET Control Theory Appl. 8(17), 1833–1842 (2014)

    Article  Google Scholar 

  10. Arabasi, S.; Masoud, Z.: Simultaneous travel and hoist maneuver input shaping control using frequency modulation. Shock Vib. 2017, 1–12 (2017)

    Article  Google Scholar 

  11. Caporali, R.P.L.: Iterative method for controlling with a command profile the sway of a payload for gantry and overhead traveling cranes. Int. J. Innov. Comput. Inform. Control 14(3), 1095–1112 (2018)

    Google Scholar 

  12. Chen, J., Huo, X., Li, C., Xu, F.: Sway elimination for hoisting rod based on input shaping method. In: Proceedings of 2017 Chinese Automation Congress, Jinan, October 20–22, pp. 4055–4060 (2017)

  13. Alhazza, K.; Masoud, Z.; Alotaibi, N.: A smooth wave-form shaped command with flexible maneuvering time: analysis and experiments. Asian J. Control 18(4), 1376–1384 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bashir, N.M.; Bature, A.A.; Abdullahi, A.M.: Pole placement control of a 2D gantry crane system with varying pole locations. Appl. Model. Simul. 2(3), 8–16 (2018)

    Google Scholar 

  15. Ramli, L.; Mohamed, Z.; Efe, M.O.; Lazim, I.M.; Jaafar, H.I.: Efficient swing control of an overhead crane with simultaneous payload hoisting and external disturbances. Mech. Syst. Signal Process. 135, 1–17 (2020)

    Article  Google Scholar 

  16. Cellmer, A., Banach, B., Piotrowski, R.: Design of modified PID controllers for 3D crane control. In: Proceedings of KKA 2017-The 19th Polish Control Conference, Kraków, June 18–21, pp 77–86 (2017)

  17. Yuslinda, S.; Jaafar, H.I.; Hazriq, I.; Razif, N.R.: The effects of auto-tuned method in PID and PD control scheme for gantry crane system. Int. J. Soft Comput. Eng. 4(6), 121–125 (2015)

    Google Scholar 

  18. Alhassan, A.; Danapalasingam, K.A.; Shehu, M.; Abdullahi, A.M.; Tijjani, A.S.: Closed-loop schemes for position and sway control of a gantry crane system. Int. J. Simul. Syst. Sci. Technol. 17(32), 28.1–28.8 (2016)

    Google Scholar 

  19. Jolevski, D.; Bego, O.: Model predictive control of gantry/bridge crane with anti-sway algorithm. J. Mech. Sci. Technol. 29(2), 827–834 (2015)

    Article  Google Scholar 

  20. Benhellal, B.; Hamerlain, M.; Rahmani, Y.: Decoupled adaptive neuro-interval type-2 fuzzy sliding mode control applied in a 3Dcrane system. Arab. J. Sci. Eng. 43, 2725–2733 (2018)

    Article  Google Scholar 

  21. Shehu, M.A.; Li, A.; Huang, B.; Wang, Y.; Liu, B.: Comparative analysis of neural-network and fuzzy auto-tuning sliding mode controls for overhead cranes under payload and cable variations. J. Control Sci. Eng. 2019, 1–13 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ngo, Q.H.; Hong, K.S.: Adaptive sliding mode control of container cranes. IET Control Theory Appl. 6(5), 662–668 (2012)

    Article  MathSciNet  Google Scholar 

  23. Lin, T.; Lin, Y.; Zirkohi, M.M.; Huang, H.: Direct adaptive fuzzy moving sliding mode proportional integral tracking control of a three-dimensional overhead crane. J. Dyn. Syst., Meas. Control 138(10), 1–11 (2016)

    Article  Google Scholar 

  24. Tuan, L.A.; Lee, S.G.: Modeling and advanced sliding mode controls of crawler cranes considering wire rope elasticity and complicated operations. Mech. Syst. Signal Process. 103, 250–263 (2018)

    Article  Google Scholar 

  25. Tuan, L.A.; Cuong, H.M.; Trieu, P.V.; Nho, L.C.; Thuan, V.D.; Anh, L.V.: Adaptive neural network sliding mode control of shipboard container cranes considering actuator backlash. Mech. Syst. Signal Process. 112, 233–250 (2018)

    Article  Google Scholar 

  26. Zhang, M.; Ma, X.; Song, R.; Rong, X.; Tian, G.; Tian, X.; Li, Y.: Adaptive proportional-derivative sliding mode control law with improved transient performance for underactuated overhead crane Systems. IEEE/CAA J. Autom. Sin. 5(3), 683–690 (2018)

    Article  MathSciNet  Google Scholar 

  27. Yakut, O.: Application of intelligent sliding mode control with moving sliding surface for overhead cranes. Neural Comput. Appl. 24(6), 1369–1379 (2014)

    Article  Google Scholar 

  28. Ngo, Q.H., Nguyen, N.P.: Sliding mode control design with the time varying parameters of the sliding surface of an offshore container crane. In: Proceedings of 2017 11th Asian Control Conference, Gold Coast, December 17–20, pp. 2669–2674 (2017)

  29. Vázquez, C.; Fridman, L.; Collado, J.; Castillo, I.: Second-order sliding mode control of a perturbed-crane. J. Dyn. Syst. Meas. Control 137(8), 1–7 (2015)

    Article  Google Scholar 

  30. Weimin, X., Xiang, Z., Yuqiang, L., Mengjie, Z.; Yuyang, L.: Adaptive dynamic sliding mode control for overhead cranes. In: Proceedings of the 2015 34th Chinese Control Conference, Hangzhou, July 28–30, pp. 3287–3292 (2015)

  31. Defoort, M., Maneeratanaporn, J., Murakami, T.: Integral sliding mode antisway control of an underactuated overhead crane system. In: Proceedings of 2012 9th France–Japan and 7th Europe–Asia Congress on Mechatronics (MECATRONICS)/13th Int’l Workshop on Research and Education in Mechatronics (REM), Paris, November 21–23, 2012, pp. 71–77 (2012)

  32. Martinez, D.I.; de Jesús Rubio, J.; Vargas, T.M.; Garcia, V.; Ochoa, G.; Balcazar, R.; Cruz, D.R.; Aguilar, A.; Novoa, J.F.; Aguilar-Ibañez, C.: Stabilization of robots with a regulator containing the sigmoid mapping. IEEE Access 8, 89479–89488 (2020)

    Article  Google Scholar 

  33. Rubio, J.D.J.; Ochoa, G.; Mujica-Vargas, D.; Garcia, E.; Balcazar, R.; Elias, I.; Cruz, D.R.; Juarez, C.F.; Aguilar, A.; Novoa, J.F.: Structure regulator for the perturbations attenuation in a quadrotor. IEEE Access 7, 138244–138252 (2019)

    Article  Google Scholar 

  34. Escobedo-Alva, J.O.; Garcí-a-Estrada, E.C.; Páramo-Carranza, L.A.; Meda-Campaña, J.A.; Tapia-Herrera, R.: Theoretical application of a hybrid observer on altitude tracking of quadrotor losing GPS signal. IEEE Access 6, 76900–76908 (2018)

    Article  Google Scholar 

  35. Rubio, J.D.J., Martinez, D.; Gutierrez, G., Vargas, T., Ochoa, G., Balcazar, R., Pacheco, J., Meda Campaña, J., Mújica-Vargas, D. The perturbations estimation in two gas plants. IEEE Access 8, 83081–83091 (2020)

  36. García-Sánchez, J.R.; Tavera-Mosqueda, S.; Silva-Ortigoza, R.; Hernández-Guzmán, V.M.; Sandoval-Guti’errez, J.; Marcelino-Aranda, M.; Taud, H.; Marciano-Melchor, M.: Robust switched tracking control for wheeled mobile robots considering the actuators and drivers. Sensors 18(12), 4316 (2018)

    Article  Google Scholar 

  37. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ouyang, H.; Hu, J.; Zhang, G.; Mei, L.; Deng, X.: Sliding-mode-based trajectory tracking and load sway suppression control for double-pendulum overhead cranes. IEEE Access 7, 4371–4379 (2019)

    Article  Google Scholar 

  39. Tuan, L.A.; Lee, S.: Sliding mode controls of double-pendulum crane systems. J. Mech. Sci. Technol. 27, 1863–1873 (2013)

    Article  Google Scholar 

  40. Ouyang, H.; Wang, J.; Zhang, G.; Mei, L.; Deng, X.: Novel adaptive hierarchical sliding mode control for trajectory tracking and load sway rejection in double-pendulum overhead cranes. IEEE Access 7, 10353–10361 (2019)

    Article  Google Scholar 

  41. Sun, N., Fang, Y., Chen, H., Fu, Y.: Super-twisting-based antiswing control for underactuated double pendulum cranes. In: Proceedings of 2015 IEEE International Conference on Advanced Intelligent Mechatronics, Busan, July 76-11, pp. 749–754 (2015)

  42. Sun, N.; Yang, T.; Fang, Y.; Wu, Y.; Chen, H.: Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1408–1418 (2019)

    Article  Google Scholar 

  43. Sun, N.; Fang, Y.; Chen, H.; Lu, B.: Amplitude-Saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics. IEEE Trans. Ind. Electron. 64, 2135–2146 (2017)

    Article  Google Scholar 

  44. Sun, N.; Wu, Y.; Fang, Y.; Chen, H.: Nonlinear antiswing control for crane systems with double-pendulum swing effects and uncertain parameters: design and experiments. IEEE Trans. Autom. Sci. Eng. 15(3), 1413–1422 (2018)

    Article  Google Scholar 

  45. Zhang, M.; Ma, X.; Rong, X.; Song, R.; Tian, X.; Li, Y.: A novel energy-coupling-based control method for double-pendulum overhead cranes with initial control force constraint. Adv. Mech. Eng. 10(1), 1–13 (2018)

    Article  Google Scholar 

  46. Sun, N.; Wu, Y.; Chen, H.; Fang, Y.: An energy-optimal solution for transportation control of cranes with double pendulum dynamics: design and experiments. Mech. Syst. Signal Process. 102, 87–101 (2018)

    Article  Google Scholar 

  47. Lu, B.; Fang, Y.; Sun, N.: Enhanced-coupling adaptive control for double-pendulum overhead cranes with payload hoisting and lowering. Automatica 101, 241–251 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chen, H.; Sun, N.: Nonlinear control of underactuated systems subject to both actuated and unactuated state constraints with experimental verification. IEEE Trans. Ind. Electron. 6(9), 7702–7714 (2020)

    Article  MathSciNet  Google Scholar 

  49. Jaafar, H.I.; Mohamed, Z.; Mohd Subha, N.A.; Husain, A.R.; Ismail, F.S.; Ramli, L.; Tokhi, M.O.; Shamsudin, M.A.: Efficient control of a nonlinear double-pendulum overhead crane with sensorless payload motion using an improved PSO-tuned PID controller. J. Vib. Control 25(4), 907–921 (2019)

    Article  MathSciNet  Google Scholar 

  50. Aguilar-Ibáñez, C.; Suarez-Castanon, M.S.: A trajectory planning based controller to regulate an uncertain 3D overhead crane system. Int. J. Appl. Math. Comput. Sci. 29(4), 693–702 (2019)

    Article  MATH  Google Scholar 

  51. Jaafar, H.I.; Mohamed, Z.; Shamsudin, M.A.; Mohd Subha, N.A.; Ramli, L.; Abdullahi, A.M.: Model reference command shaping for vibration control of multimode flexible systems with application to a double-pendulum overhead crane. Mech. Syst. Signal Process. 115, 677–695 (2019)

    Article  Google Scholar 

  52. Jaafar, H.I., Mohamed, Z., Ramli, L.; Abdullahi, A.M.: Vibration control of a nonlinear double-pendulum overhead crane using feedforward command shaping. In: Proceedings of 2018 IEEE Conf. Sys., Process and Control, Melaka, Malaysia, December 14–15, pp. 118–122 (2018)

  53. Zhang, M.; Ma, X.; Chai, H.; Li, Y.: A novel online motion planning method for double-pendulum overhead cranes. Nonlinear Dyn. 85(2), 1079–1090 (2016)

    Article  MATH  Google Scholar 

  54. Liu, C.,Sun, B., Li, F.: Acceleration planning based anti-swing and position control for double-pendulum cranes. In: Proceedings of 2017 29th Chinese Control And Decision Conference, Chongqing, May 28–30, pp. 5671–5675 (2017)

  55. Moreno, J.A.: On strict Lyapunov functions for some non-homogeneous super-twisting algorithms. J. Franklin Inst. 351(4), 1902–1919 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Nagesh, I.; Edwards, C.: A multivariable super-twisting sliding mode approach. Automatica 50(3), 984–988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Amin, J.; Friedland, B.; Harnoy, A.: Implementation of a friction estimation and compensation technique. IEEE Control Syst. Mag. 17(4), 71–76 (1997)

    Article  Google Scholar 

  58. Makkar, C., Dixon, W.E., Sawyer, W.G., Hu, G.: A new continuously differentiable friction model for control systems design. In: Proceedings of 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA, July 24–28, pp. 600–605 (2015)

  59. Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of 35th IEEE Conference on Decision and Control, Kobe, Vol. 4, pp. 4591–4596, December 13-13 (1996)

  60. Poznyak, A.S.: Advanced Mathematical Tools for Automatic Control Engineers. Elsevier, Amsterdam (2009)

    Google Scholar 

  61. Priyadarshi, N.; Padmanaban, S.; Bhaskar, M.S.; Blaabjerg, F.; Holm-Nielsen, J.B.; Azam, F.; Sharma, A.K.: A hybrid photovoltaic-fuel cell-based single-stage grid integration with lyapunov control scheme. IEEE Syst. J. 14(3), 3334–3342 (2020)

    Article  Google Scholar 

  62. Hiari, O.; Mesleh, R.; Al-Khatib, A.: A system simulation framework for modeling space modulation techniques. IEEE Syst. J. 14(1), 1435–1446 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The project is sponsored by The Shaanxi Provincial Natural Science Foundation Basic Research and Development Program (2019JLZ-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad A. Shehu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehu, M.A., Li, A. A Novel Smooth Super-Twisting Control Method for Perturbed Nonlinear Double-Pendulum-Type Overhead Cranes. Arab J Sci Eng 46, 7249–7263 (2021). https://doi.org/10.1007/s13369-021-05340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05340-0

Keywords

Navigation