Skip to main content

Advertisement

Log in

Fully Improved Quadrature Spatial Modulation

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, novel space modulation techniques (SMT), which we called fully improved quadrature spatial modulation (FIQSM) and fully improved quadrature space shift keying (FIQSSK), are presented for multiple-input–multiple-output (MIMO) communication systems. In these techniques, the improved structure that allows the use of an arbitrary number of Tx antennas is implemented. Unlike other SMT schemes, the spectral efficiency (SE) of proposed techniques increases linearly with the increase in the number of Tx antennas and a twofold increase in the number of spatially modulated bits is achieved with the aid of quadrature spatial structure. The bit error rate (BER) performance of the proposed techniques is investigated over Rayleigh fading channels for several MIMO designs. The average BER performances are also obtained analytically with the help of pairwise error probability and union-bound techniques in order to validate the simulation results. In addition, SE values achieved for varying SNR at a BER of \(10^{-3}\) are obtained for both correlated and uncorrelated Rayleigh channels. In these figures, spatial multiplexing is considered as a benchmark as well as SMTs. As a result, the proposed modulation schemes outperform the benchmarks (e.g., spatial modulation, generalized spatial modulation, quadrature spatial modulation) in terms of BER at different spectral efficiencies. Additionally, the receiver complexity of the FIQSM scheme is equal to the benchmarks at the same spectral efficiency and the receiver complexity of the FIQSSK is lower than the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cisco.: Visual Networking Index: Forecast and Trends, 2017–2022. White paper , vol. 1, pp. 1–38 (2019)

  2. Di Renzo, M.; Haas, H.; Ghrayeb, A.; Sugiura, S.; Hanzo, L.: Spatial modulation for generalized MIMO: challenges, opportunities and implementation. Proc. IEEE 102(1), 56–103 (2014)

    Article  Google Scholar 

  3. Mesleh, R.; Alhassi, A.: Space Modulation Techniques. Wiley, Hoboken (2018)

    Book  Google Scholar 

  4. Jeganathan, J.; Ghrayeb, A.; Szczecinski, L.; Ceron, A.: Space shift keying modulation for mimo channels. IEEE Trans. Wirel. Commun. 8(7), 3692–3703 (2009)

    Article  Google Scholar 

  5. Jeganathan, J.; Ghrayeb, A.; Szczecinski, L.: Generalized space shift keying modulation for MIMO channels. In: Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, Cannes, France, October (2008)

  6. Mesleh, R.; Ikki, S.; Aggoune, H.: Quadrature spatial modulation. IEEE Trans. Veh. Technol. 64(6), 2738–2742 (2015)

    Article  Google Scholar 

  7. Mesleh, R.; Hiari, O.; Younis, A.: Generalized space modulation techniques: hardware design and considerations. Phys. Commun. 26, 87–95 (2018)

    Article  Google Scholar 

  8. Mesleh, R.; Haas, H.; Ahn, C. W.; Yun, S.: Spatial modulation-a new low complexity spectral efficiency enhancing technique. In: Proceedings of the IEEE International Conference on Communications and Networking in China (ICCNC), Beijing, China, pp. 1–5 (2006)

  9. Mesleh, R.; et al.: Spatial modulation. IEEE Trans. Veh. Technol. 57(4), 2228–2241 (2008)

    Article  Google Scholar 

  10. Younis, A.; et al.: Generalized spatial modulation. In: Conference Rec. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, pp. 1498–1502 (2010)

  11. Wang, J.; Jia, S.; Song, J.: Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme. IEEE Trans. Wirel. Commun. 11(4), 1605–1615 (2012)

    Article  Google Scholar 

  12. Tarokh, V.; Seshadri, N.; Calderbank, A.: Space–time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. Inf. Theory 44(2), 744–765 (1998)

    Article  MathSciNet  Google Scholar 

  13. Fang, S.; Li, L.; Hu S.; Feng, G.: Layered space shift keying modulation over MIMO channels. In: IEEE International Conference on Communications (ICC), London, pp. 2148–2153 (2015)

  14. Fang, S.; et al.: Layered space shift keying modulation over mimo channels. IEEE Trans. Veh. Technol. 66(1), 159–174 (2017)

    Google Scholar 

  15. Yue, Z.; Fang, S.; Wang, Y.; Lu, B.; Han Y.; Peng, X.: Multi-stream space shift keying modulation over MIMO channels. In: IEEE/CIC International Conference on Communications in China (ICCC), Chengdu, pp. 1–5 (2016)

  16. Dhanasekaran, S.: Space-polarization shift keying modulation for MIMO channels. Wirel. Pers. Commun. 86, 1509–1539 (2016)

    Article  Google Scholar 

  17. Castillo-Soria, F.R.; Cortez-González, J.; Ramirez-Gutierrez, R.; Maciel-Barboza, F.M.; Soriano-Equigua, L.: Generalized quadrature spatial modulation scheme using antenna grouping. ETRI J. 39(5), 707–717 (2017)

  18. Chen, C.-C.; Sari, H.; Sezginer, S.; Su, Y.: Enhanced spatial modulation with multiple signal constellations. IEEE Trans. Commun. 25(63), 2237–2248 (2015)

    Article  Google Scholar 

  19. Binh, V.; Nguyen, Ha H.: Improved Quadrature Spatial Modulation. In: IEEE 86th Vehicular Technology Conference (VTC-Fall), 1–5, September (2017)

  20. Luna-Rivera, J.M.; et al.: Improving the performance of spatial modulation schemes for MIMO channels. Wireless Pers. Commun. 77(1), 2061–2074 (2014)

    Article  Google Scholar 

  21. Liu, P.; Renzo, M.D.; Springer, A.: Variable-nu generalized spatial modulation for indoor los mm-wave communication: performance optimization and novel switching structure. IEEE Trans. Commun. 99(1), 1–5 (2017)

    Google Scholar 

  22. Elsayed, M.; Hussein, H. S.; Mohamed, U. S.: Fully generalised spatial modulation. In: 35th National Radio Science Conference (NRSC), pp. 274–282, March (2018)

  23. Hussein, H. S.; Elsayed, M.: Fully-quadrature spatial modulation. In: Proceedings of the IEEE International Black Sea Conference on Communications and Networking, 1–5, July (2018)

  24. Hussein, H.S.; et al.: Spectral efficient spatial modulation techniques. IEEE Access 7(1), 1454–1469 (2018)

    MathSciNet  Google Scholar 

  25. Kumaravelu, V.B.; Jaiswal, G.; Gudla, V.V.; et al.: Modified spatial modulation: an alternate to spatial multiplexing for 5G-based compact wireless devices. Arab. J. Sci. Eng. 44, 6693 (2019)

    Article  Google Scholar 

  26. Abu-Hudrouss, A.M.; Astal, O.E.; Al Habbash, A.H.; Aïssa, S.: Signed quadrature spatial modulation for MIMO systems. IEEE Trans. Veh. Technol. 69(3), 2740–2746 (2020)

    Article  Google Scholar 

  27. Luna-Rivera, J.M.; Gonzalez-Perez, M.G.: An improved spatial modulation scheme for MIMO channels. In: 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, pp. 1–5 (2015)

  28. Simon, M.K.; Alouini, M.S.: Digital Communication over Fading Channels. Wiley, New York (2005)

    Google Scholar 

  29. Zelst, V.; Hammerschmidt, J.: A single coefficient spatial correlation model for multiple-input multiple-output (MIMO) radio channels. In: 27th General Assembly of the International Union of Radio Science (URSI), Maastricht, The Netherlands, pp. 1–5 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasin Celik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celik, Y. Fully Improved Quadrature Spatial Modulation. Arab J Sci Eng 46, 9639–9647 (2021). https://doi.org/10.1007/s13369-020-05296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05296-7

Keywords

Navigation