Skip to main content

Advertisement

Log in

Spectrochemical Analysis of Cinnamon Using Advanced Analytical XPS and LIBS Techniques

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Ceylon cinnamon is known for its unique aroma and medicinal benefits, and it has been used in indigenous medicines for thousands of years. The elements present in cinnamon can be nutritional as well pharmacologically mediate therapeutic properties to cure diseases. In this study, the elemental composition of cinnamon was evaluated using two advanced elemental analysis techniques: laser induced breakdown spectroscopy (LIBS) and X-ray photoelectron spectroscopy (XPS). The results of both the studies mutually substantiated the predominant level of some vital nutrients like potassium and calcium, besides other elements. Initially the LIBS system was experimentally optimized, specifically for the elemental analysis of cinnamon, and also the key plasma parameters like plasma temperature, and electron number density were measured to confirm the establishment of local thermodynamic equilibrium in laser induced plasma in cinnamon. Our LIBS system detected the presence of many vital nutrients like Na, K, Fe, Cd, Mg, Mn, Ni, Ba, Si, F, P, Ca, O, K, and S in cinnamon. In addition of LIBS, the XPS elemental study revealed the presence of Ca, O, K, and S, which further reiterated the predominance of these elements in cinnamon samples. The comparative analysis of these two techniques indicates that apparently LIBS is far more sensitive than XPS to detect trace level of many elements. Among the nutritional elements, the presence of potassium in cinnamon explains its medicinal use for hypertension under diuretic treatment. The results presented in this paper may be instrumental for the development of various cinnamon based herbal medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sangal, A.: Role of cinnamon as beneficial antidiabetic food adjunct: a review. Adv. Appl. Sci. Res. 2(4), 440–450 (2011)

    Google Scholar 

  2. Vangalapati, M.; Sree Satya, N.; Surya Prakash, D.; Avanigadda, S.: A review on pharmacological activities and clinical effects of cinnamon species. Res. J. Pharm. Biol. Chem. Sci. 3(1), 653–663 (2012)

    Google Scholar 

  3. Huang, T.-C.; Fu, H.-Y.; Ho, C.-T.; Tan, D.; Huang, Y.T.; Pan, M.-H.: Induction of apoptosis by cinnamaldehyde from indigenous cinnamon Cinnamomum osmophloeum Kaneh through reactive oxygen species production, glutathione depletion, and caspase activation in human leukemia K562 cells. Food Chem. 103(2), 434–443 (2007)

    Google Scholar 

  4. Yeh, H.-F.; Luo, C.-Y.; Lin, C.-Y.; Cheng, S.-S.; Hsu, Y.-R.; Chang, S.-T.: Methods for thermal stability enhancement of leaf essential oils and their main Constituents from Indigenous Cinnamon (Cinnamomum osmophloeum). J. Agric. Food Chem. 61(26), 6293–6298 (2013)

    Google Scholar 

  5. Chang, C.-W.; Chang, W.-L.; Chang, S.-T.; Cheng, S.-S.: Antibacterial activities of plant essential oils against Legionella pneumophila. Water Res. 42(1–2), 278–286 (2008)

    Google Scholar 

  6. Marongiu, B.; Piras, A.; Porcedda, S., et al.: Supercritical CO2 extract of Cinnamomum zeylanicum: chemical characterization and antityrosinase activity. J. Agric. Food Chem. 55(24), 10022–10027 (2007)

    Google Scholar 

  7. Chou, S.-T.; Chang, W.-L.; Chang, C.-T.; Hsu, S.-L.; Lin, Y.-C.; Shih, Y.: Cinnamomum cassia Essential Oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells. Int. J. Mol. Sci. 14(9), 19186–19201 (2013)

    Google Scholar 

  8. Nonaka, G.-I.; Morimoto, S.; Nishioka, I.: Tannins and related compounds Part 13. Isolation and structures of trimeric, tetrameric, and pentameric proanthicyanidins from cinnamon. J. Chem. Soc. Perkin Trans. 1, 2139–2145 (1983)

    Google Scholar 

  9. Anderson, R.A.; Broadhurst, C.L.; Polansky, M.M., et al.: Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J. Agric. Food Chem. 52(1), 65–70 (2004)

    Google Scholar 

  10. Peng, X.; Cheng, K.-W.; Ma, J., et al.: Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J. Agric. Food Chem. 56(6), 1907–1911 (2008)

    Google Scholar 

  11. Hoo Fung, L.A.; Antoine, J.M.; Grant, C.N.; Buddo, D.S.: Evaluation of dietary exposure to minerals, trace elements and heavy metals from the muscle tissue of the lionfish Pterois volitans (Linnaeus 1758). Food Chem. Toxicol. 60, 205–212 (2013). https://doi.org/10.1016/j.fct.2013.07.044

    Article  Google Scholar 

  12. Willhite, C.C.; Ball, G.L.; McLellan, C.J.: Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water. Crit. Rev. Toxicol. 42(5), 358–442 (2012). https://doi.org/10.3109/10408444.2012.674101

    Article  Google Scholar 

  13. Rehan, I.; Gondal, M.A.; Rehan, K.; Sultana, S.; Dastageer, M.A.; Al-Adel, F.F.: LIBS for the detection of lead in ready to use henna paste and nutrients in fresh henna leaves and cultivated soils. Talanta 199, 203–211 (2019)

    Google Scholar 

  14. Gondal, M.A.; Dastageer, M.A.; Maslehuddin, M.; Alnehmi, A.J.; Al-Amoudi, O.S.B.: Detection of sulfur in the reinforced concrete structures using a dual pulsed LIBS system. Opt. Laser Technol. 44, 566–571 (2012)

    Google Scholar 

  15. Gondal, M.A.; Habibullah, Y.B.; Baig, U.; Oloore, L.E.: Direct spectral analysis of tea samples using 266 nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS. Talanta 152, 341–352 (2016)

    Google Scholar 

  16. Shah, S.K.H.; Iqbal, J.; Ahmad, P.; Khandaker, M.U.; Haq, S.; Naeem, M.: Laser induced breakdown spectroscopy methods and applications: a comprehensive review. Radiat. Phys. Chem. 170, 108666 (2020)

    Google Scholar 

  17. Gaudiuso, R.; Melikechi, N.; Abdel-Salam, Z.A.; Harith, M.A.; Palleschi, V.; Motto-Ros, V.; Busser, B.: Laser-induced breakdown spectroscopy for human and animal health: a review. Spectrochim. Acta B 152, 123–148 (2019)

    Google Scholar 

  18. Qiao, S.; Ding, Y.; Tian, D.; Yao, L.; Yang, G.: A review of laser-induced breakdown spectroscopy for analysis of geological materials. Appl. Spectrosc. Rev. 50(1), 1–26 (2015)

    Google Scholar 

  19. Rehan, I.; Rehan, K.; Sultana, S.; Khan, M.Z.; Muhammad, R.: LIBS coupled with ICP/OES for the spectral analysis of betel leaves. Appl. Phys. B Lasrs O 124(5), 76 (2018)

    Google Scholar 

  20. Senesi, G.S.; Cabral, J.; Menegatti, C.R.; Marangoni, B.; Nicolodelli, G.: Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: an overview of developments in the last decade (2010–2019). Part II. Crop plants and their food derivatives. TrAC Trend. Anal. Chem. 118, 453–469 (2019)

    Google Scholar 

  21. Modlitbová, P.; Pořízka, P.; Kaiser, J.: Laser-induced breakdown spectroscopy as a promising tool in the elemental bioimaging of plant tissues. TrAC Trends Anal. Chem. 122, 115729 (2020)

    Google Scholar 

  22. Gondal, M.A.; Maganda, Y.W.; Dastageer, M.A.; Al Adel, F.F.; Naqvi, A.A.; Qahtan, T.F.: Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1 nm. Opt. Laser Technol. 57, 32–38 (2014)

    Google Scholar 

  23. Mehder, A.O.; Gondal, M.A.; Dastageer, M.A.; Habibullah, Y.B.; Iqbal, M.A.; Oloore, L.E.; Gondal, B.: Direct spectral analysis and determination of high content of carcinogenic bromine in bread using UV pulsed laser induced breakdown spectroscopy. J. Environ. Sci. Health B 51(6), 358–365 (2016)

    Google Scholar 

  24. Khawaja, E.E.; Salim, M.A.; Khan, M.A.; Al-Adel Khattak Husain, F.G.D.Z.: XPS, auger, electrical and optical studies of vanadium phosphate glasses doped with nikel oxide. J. Non-Crystall. Solids 110, 33–44 (1989)

    Google Scholar 

  25. Khawaja, E.E.; Khan, M.A.; Al-Adel, F.; Hussain, Z.: Laser-produced reduction of pentavalent vanadium in aqueous solutions and V2O5 powder. J. Appl. Phys. 68, 1205–1211 (1990)

    Google Scholar 

  26. Khawaja, E.E.; Al-Adel Hallak Al-Kofahi Rutherford, F.A.B.M.M.: Backscattering spectroscopy and X-ray photoelectron spectroscopy studies of thin glass films prepared by laser evaporation. Thin Solid Films 192, 149–156 (1990)

    Google Scholar 

  27. Khawaja, E.E.; Bouamrane Al-Adel, F.F.; Hallak, A.B.; Daous, M.A.; Salim, M.A.: Study of Lorentz–Lorentz law and the energy loss of 14He ions in titanium oxide films. Thin Solid Films 240, 121–130 (1994)

    Google Scholar 

  28. Khawaja, E.E.; Durrani, S.M.A.; Al-Adel, F.; Salim, M.A.; Sakhawat Hussain, M.: X-ray photoelectron spectroscopy and FTIR studies of transition metal phosphate glasses. J. Mater. Sci. 30, 225–234 (1995)

    Google Scholar 

  29. Al-Kuhaili, M.F.; Ahmad, S.H.A.; Durrani, S.M.A.; Faiz, M.M.; Ul-Hamid, A.: Energy-saving spectrally-selective coatings based on MoO3/Ag thin films. Mater. Des. 73, 15–19 (2015)

    Google Scholar 

  30. Briggs, D.; Seah, S.M.: Practical Surface Analysis. Wiley, New York (1990)

    Google Scholar 

  31. Al Adel, F.F.; Dastageer, M.A.; Gasmi, K.; Gondal, M.A.: Optimization of a laser induced breakdown spectroscopy method for the analysis of liquid samples. J. Appl. Spectrosc. 80(N5), 777–780 (2013)

    Google Scholar 

  32. Harilal, S.S.; Bindhu, C.V.; Nampoori, V.P.N.: Temporal and spatial behavior of electron density and temperature in a laser-produced plasma from YBaCuO. Appl. Spectrosc. 52, 449–455 (1998)

    Google Scholar 

  33. Shirvani-Mahdavi, H.; Shoursheini, S.Z.; Gholami, H.; Dini-Torkamani, Z.; Shahari-Korani, : Calibration-free laser-induced plasma analysis of a metallic alloy with self-absorption correction. Appl. Phys. B 117, 823–832 (2014)

    Google Scholar 

  34. Harilal, S.S.; Bindhu, C.V.; Nampoori, V.P.N.; Vallabhan, C.P.G.: Temporal and spatial behavior of electron density and temperature in a laser-produced plasma from YBa2Cu3O7. Appl. Spectrosc. 52(3), 449–455 (1998)

    Google Scholar 

  35. Zhang, S.; Wang, X.; He, M.; Jiang, Y.; Zhang, B.; Hang, W.; Huang, B.: Laser-induced plasma temperature. Spectrochim. Acta B 97, 13–33 (2014)

    Google Scholar 

  36. Salvetti, A.; Tognoni, E.: A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy. Spectrochim. Acta B 57(2), 339–353 (2002)

    Google Scholar 

  37. Radziemski, L.J.; Cremers, D.A.: Handbook of Laser Induced Breakdown Spectroscopy, 1st edn. Wiley, London (2006)

    Google Scholar 

  38. Russo, R.E.; Mao, X.L.; Yoo, J.; Gonzalez, J.J.: Laser ablation. In: Singh, J.P.; Thakur, S.N. (Eds.) Laser Induced Breakdown Spectroscopy, pp. 49–82. Elsevier, Amsterdam (2007)

    Google Scholar 

  39. Singh, J.P.; Thakur, S.N.: Laser-Induced Breakdown Spectroscopy, 2nd edn. Elsevier, New York (2020)

    Google Scholar 

  40. Aragón, C.; Aguilera, J.A.: Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods. Spectrochim. Acta B 63, 893–916 (2008)

    Google Scholar 

  41. Cristoforetti, G.; De Giacomo, A.; Dell’Aglio, M.; Legnaioli, S.; Tognoni, E.; Palleschi, V.; Omenetto, N.: Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion. Spectrochim. Acta B 65, 86–95 (2010)

    Google Scholar 

  42. Jiajia, H.O.U.; Zhang, L.; Yang, Z.H.A.O.; Zhe, W.A.A.G.; Zhang, Y.; Weiguang, M.A.; Suotang, J.I.A.: Mechanisms and efficient elimination approaches of self-absorption in LIBS. Plasma Sour. Sci. Technol. 21, 1–15 (2019)

    Google Scholar 

  43. Yi, R.; Guo, L.; Li, C.; Yang, X.; Li, J.; Li, X.; Zeng, X.; Lu, Y.: Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 31, 961–967 (2016)

    Google Scholar 

  44. Cristoforetti, G.; Tognoni, E.; Gizzi, L.A.: Thermodynamic equilibrium states in laser induced plasmas: from the general case to laser-induced breakdown spectroscopy plasmas. Spectrochim. Acta B 90, 1–22 (2013)

    Google Scholar 

  45. Harilal, S.S.; Bindhu, C.V.; Issac, R.C.; Nampoori, V.P.N.; Vallabhan, C.P.G.: Electron density and temperature measurements in a laser produced carbon plasma. J. Appl. Phys. 82, 2140–2146 (1997)

    Google Scholar 

  46. Cristoforettia, G.; De, A.; Giacomobc, M.; Dell’Aglioc, S.L.; Palleschia, T.V.; Omenettod, N.: Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion. Spectrochim. Acta Part B At. Spectrosc. 65, 86–95 (2010)

    Google Scholar 

  47. NIST Atomic spectra database. http://www.nist.gov/physlab/data/asd.cfm

  48. Kotchen, T.A.; Kotchen, J.M.: Dietary sodium and blood pressure: interactions with other nutrients. Am. J. Clin. Nutr. 65(2), 708S-711S (1997)

    Google Scholar 

  49. Jansson, A.; Lindholm, A.; Lindberg, J.E.; Dahlborn, K.: Effects of potassium intake on potassium, sodium and fluid balance in exercising horses. Equine Vet. J. 31(S30), 412–417 (1999)

    Google Scholar 

  50. Burg, E.D.; Remillard, C.V.; Yuan, J.X.-J.: Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br. J. Pharmacol. 153(S1), S99–S111 (2008)

    Google Scholar 

  51. Somjen, G.G.: Extracellular potassium in the mammalian central nervous system. Annu. Rev. Physiol. 41(1), 159–177 (1979)

    Google Scholar 

  52. Cody, R.J.; Covit, A.B.; Schaer, G.L.; Laragh, J.H.; Sealey, J.E.; Feldschuh, J.: Sodium and water balance in chronic congestive heart failure. J. Clin. Investig. 77(5), 1441–1452 (1986)

    Google Scholar 

  53. Bohr, D.F.; Webb, R.C.: Vascular smooth muscle function and its changes in hypertension. Am. J. Med. 77(4), 3–16 (1984)

    Google Scholar 

  54. Eastell, R.; Lambert, H.: Diet and healthy bones. Calcif. Tissue Int. Berlin 70(5), 400 (2002)

    Google Scholar 

  55. Métayer, S.; Seiliez, I.; Collin, A.; Duchêne, S.; Mercier, Y.; Geraert, P.-A.; Tesseraud, S.: Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. J. Nutr. Biochem. 19(4), 207–215 (2008)

    Google Scholar 

  56. Brown, R.G.; Button, G.M.; Smith, J.T.: Changes in collagen metabolism caused by feeding diets low in inorganic sulfur. J. Nutr. 87(2), 228–232 (1965)

    Google Scholar 

  57. Rockey, D.C.; Cello, J.P.: Evaluation of the gastrointestinal tract in patients with iron-deficiency anemia. N. Engl. J. Med. 329(23), 1691–1695 (1993)

    Google Scholar 

  58. Ekiz, C.; Agaoglu, L.; Karakas, Z.; Gurel, N.; Yalcin, I.: The effect of iron deficiency anemia on the function of the immune system. Hematol. J. 5(7), 579–583 (2005)

    Google Scholar 

  59. Martinez-Torres, C.A.R.L.O.S.; Cubeddu, L.U.I.S.; Dillmann, E.R.I.C.; Brengelmann, G.L.; Leets, I.R.E.N.E.; Layrisse, M.I.G.U.E.L.; Johnson, D.G.; Finch, C.L.E.M.E.N.T.: Effect of exposure to low temperature on normal and iron-deficient subjects. Am. J. Physiol. Regulat. Integr. Compar. Physiol. 246(3), R380–R383 (1984)

    Google Scholar 

  60. Rock, E.; Mazur, A.; O’connor, J.M.; Bonham, M.P.; Rayssiguier, Y.; Strain, J.J.: The effect of copper supplementation on red blood cell oxidizability and plasma antioxidants in middle-aged healthy volunteers. Free Radic. Biol. Med. 28(3), 324–329 (2000)

    Google Scholar 

  61. Prohaska, J.R.; Lukasewycz, O.A.: Effects of copper deficiency on the immune system. In: Bendich, A.; Phillips, M.; Tengerdy, R.P. (Eds.) Antioxidant Nutrients and Immune Functions, pp. 123–143. Springer, Boston (1990)

    Google Scholar 

  62. Turnlund, J.R.; Reager, R.D.; Costa, F.: Iron and copper absorption in young and elderly men. Nutr. Res. 8(4), 333–343 (1988)

    Google Scholar 

  63. Chen, P.; Bornhorst, J.; Aschner, M.: Manganese metabolism in humans. In: Biosci, F. (Ed.) Frontiers In Bioscience, Landmark. pp. 1655–1679. Springer, Boston (2019)

Download references

Acknowledgement

The authors acknowledge gratefully King Fahd University of Petroleum and Minerals for supporting this work and providing excellent research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fida F. Al Adel or M. A. Gondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Adel, F.F., Gondal, M.A., Lais, A. et al. Spectrochemical Analysis of Cinnamon Using Advanced Analytical XPS and LIBS Techniques. Arab J Sci Eng 46, 5993–6006 (2021). https://doi.org/10.1007/s13369-020-05251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05251-6

Keywords

Navigation