Skip to main content
Log in

Modeling Methodology for a Complex System Applied to a Speed Measurement Operation for Internal Combustion Engines for Automotive Use

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A complex system is a set of interacting entities which prevents the observer from understanding and analyzing its structure and operation. This paper proposes a methodology of behavioral study based on the systemic modeling of these system types. It presents some modeling approaches. Then, some system modeling tools used by researchers are presented. To explain the contributions, the paper presents a behavioral study by temporal and frequency analysis of measuring and displaying the speed of internal combustion engines to automotive use. This study is performed after experimental validation of the designed simulation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Theo, H.; Nikolce, M.; Etman, P.; Maarten, S.: Review of optimization strategies for system-level design in hybrid electric vehicles. IEEE Trans. Veh. Technol. 66(1), 57–70 (2017)

    Google Scholar 

  2. Vergé, M.; Jaume, D.: Modélisation structurée des systèmes avec. Bond graphs: Editions. TECHNIP, Paris (2003)

    Google Scholar 

  3. Cellier, F.E.: Continuous System Modeling. Springer, New York (1991)

    Book  Google Scholar 

  4. Jun, W.; Guang, Y.; Ying, G.; Liping, W.: Mechatronics modeling and vibration analysis of a 2-DOF parallel manipulator in a 5-DOF hybrid machine tool. Mech. Mach. Theory. 121, 430–445 (2018)

    Article  Google Scholar 

  5. Liu, C.; Hrishikesh, V.; Ray, Y.Z.; Xu, X.: A systematic development method for cyber-physical machine tools. J. Manuf. Syst. 48, 4–12 (2018)

    Google Scholar 

  6. Enaiyat Ghani, O.; Qiao, S.: Wind turbine dynamics modelling by a bond graph approach. Int. J. Dyn. Control 6(4), 1523–1542 (2018)

    Article  Google Scholar 

  7. Paris, T:. Modélisation de Systèmes Complexes par Composition: Une démarche hiérarchique pour la co-simulation de composants hétérogènes. Modélisation et simulation. PHD, University of Lorraine, French (2019)

  8. Peilin, K.; Chao, W.: The structure-behavior coalescence approach for systems modeling. IEEE Access 7, 8609–8620 (2019)

    Article  Google Scholar 

  9. Jérôme, L.; Romain, L.; Damien, V.: Model of a hybrid electrical system for software and system V&V on hardware in the loop test bench. IFAC-PapersOnLine 50(1), 1–15 (2017)

    Article  Google Scholar 

  10. Dupé, V:. Conception multidisciplinaire de microsystèmes autonomes. PHD, Université Bordeaux, France (2011)

  11. Hug, C:. Méthode, modèles et outil pour la méta-modélisation des processus d’ingénierie de systèmes d’information. PHD, Université Joseph Fourier, Grenoble, France (2009)

  12. Fahim, A.; Stewart, R.; Antuela, A.: Using the structred analysis and design technique (SADT) in simulation conceptual modeling. In: Proceedings of the 2014 Winter Simulation Conference, United Kingdom, IEEE (2014)

  13. Li, Y.; Frank, W.G.; Olga, N.A.: Delivery systems: a systematic approach for barrier management. Saf. Sci. 121, 679–694 (2020)

    Article  Google Scholar 

  14. Shaofan, Z.; Jian, T.; Jean-Marie, G.; Faudou, R.: A formal approach using SysML for capturing functional requirements in avionics domain. Chin. J. Aeronaut. 32(12), 2717–2726 (2019)

    Article  Google Scholar 

  15. Mousavi, B.A.; Azzouz, R.; Heavey, C.; Ehm, H.: A survey of model-based system engineering methods to analyse complex supply chains: a case study in semiconductor supply chain. IFAC-PapersOnLine 52(13), 1254–1259 (2019)

    Article  Google Scholar 

  16. Ben Salem, J.; Lakhoua, M.N.; El Amraoui, L.: Analysis of a braking system on the basis of structured analysis methods. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 7(2), 87–92 (2016)

    Google Scholar 

  17. Demri, A.: Contribution à l'évaluation de la fiabilité d'un système mécatronique par modélisation fonctionnelle et dysfonctionnelle. PHD, Université d'Angers, France (2009)

  18. Barrera-Gallegos, N.; Gonzalez-Avalos, G.; Ayala-Jaimes, G.; Padilla-Garcia, J.A.: Approximate models of singularly perturbed time-varying systems: a bond graph approach. J. Control Autom. Electr. Syst. 31, 1–18 (2020)

    Article  Google Scholar 

  19. Samantaray, A.K.; Bouamama, B.O.: Model-based process supervision: a bond graph approach. Springer, Berlin (2008)

    Google Scholar 

  20. Melina, C.; Vidoni, A.R.; Vecchiett, A.: Systemic approach to define and characterize advanced planning systems (APS). Comput. Indus. Eng. 90, 326–338 (2015)

    Article  Google Scholar 

  21. Ben Salem, J.; Lakhoua, M.N.; El Amraoui, L.: Modeling of dynamical system piloted by discrete subsystem based on bond graph approach. Int. J. Electr. Comput. Eng. (IJECE) 7(5), 2902–2910 (2017)

    Article  Google Scholar 

  22. Hussein, M.T.: Modeling mechanical and electrical uncertain systems using functions of robust control MATLAB Toolbox® 3. Int. J. Adv. Comput. Sci. Appl. 6(4), 79–84 (2015)

    Google Scholar 

  23. Sahoo, S.R.; Chiddarwar, S.S.: Mobile robot control using bond graph and flatness based approach. Proc. Comput. Sci. 133, 213–221 (2018)

    Article  Google Scholar 

  24. José, J.; Lamas, S.; Paula, M.C.; Adriana, D.; Francisco, J.; Vazquez, A.: Multi-loop inductive sensor model for vehicle traffic applications. Sensors Actuator 263, 580–592 (2017)

    Article  Google Scholar 

  25. Asch, G.: Les capteurs en instrumentation industrielle, Edition no. 7. Dunod, Paris (1982)

    Google Scholar 

  26. Ben Salem, J.; Lakhoua, M.N.; El Amraoui, L.: Modeling the speed measuring chain in ABS braking system. In: Proceedings of the 7th international conference, the Sciences of Electronics ,Technologies of Information and Telecommunications, Tunisia, SETIT IEEE Xplorer (2017)

  27. Ben Salem, J.: Contribution à la modélisation systémique des systèmes mécatroniques. Cas d’un système de freinage ABS. PHD, ENICarthage Tunisia (2019)

  28. Mughal, A.: Elements of bond graph real time modeling: simulation and control of dynamical systems. Springer, Berlin (2016)

    Book  Google Scholar 

  29. Nguyen, M.V.H.: Synthèse de tolérance pour la conception des systèmes mécatroniques. Approche par Bond Graph inverse. PHD, Université de Lyon, France (2014)

  30. Cheng, P.J.; Huang, H.P.: Robust fault detection and isolation using bond graph for an active–passive variable serial elastic actuator. Int. J. Robot. Autom. (IJRA) 6(2), 29 (2015)

    Google Scholar 

  31. Cauffriez, L.; Grondel, S.; Loslever, P.; Aubrun, C.: Bond Graph modeling for fault detection and isolation of a train door mechatronic system. Control Eng. Pract. 49, 212–224 (2016)

    Article  Google Scholar 

  32. Djeziri, M.A.: Diagnostic des Systèmes Incertains par l’Approche Bond Graph. PHD, Ecole Centrale de Lille, France (2007)

  33. Ben Salem, J.; Lakhoua, M.N.; El Amraoui, L.: Behavioral study of a multi-input dynamic system by Bond Graph approach. In: Proceedings of the 2nd International Conference on Advanced Systems and Electrical Technologies (IC_ASET'2018), IEEE Xplorer (2018)

  34. Niu, G.; Zhao, Y.; Defoort, M.; Pecht, M.: Fault diagnosis of locomotive electro-pneumatic brake through uncertain bond graph modeling and robust online monitoring. Mech. Syst. Signal Process. 50, 676–691 (2015)

    Article  Google Scholar 

  35. Silvio, M.; Maurício, R.; Altair, S.: Undesired splash over on equipments using inductive sensors for monitoring automotive vehicles controlled speed. Rev. EIA 14(27), 97–109 (2017)

    Article  Google Scholar 

  36. Marleau, L.: Mécanique classique. Canada, Scienific Work Place (SWP) (2017)

    Google Scholar 

Download references

Funding

National Engineering School of Carthage (+216) 71 941 579.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamel Ben Salem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Salem, J., Lakhoua, M.N. & El Amraoui, L. Modeling Methodology for a Complex System Applied to a Speed Measurement Operation for Internal Combustion Engines for Automotive Use. Arab J Sci Eng 46, 1499–1509 (2021). https://doi.org/10.1007/s13369-020-05190-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05190-2

Keywords

Navigation