Skip to main content
Log in

A New Method to Measure the Information Quality Based on Shannon Entropy

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

When aggregating data from multi-source uncertain information, how to increase the certainty and reduce the conflict is still an open issue. This paper proposes a new method to measure information quality based on Shannon entropy, which can be used to measure the certainty or information provided by probability distributions. Furthermore, a method to obtain information quality-fused values from different probability distributions is given, which can be used to measure the conflict when fusing probability distributions. Based on them, a probability aggregation method that considers both uncertainty and conflict is developed and applied to fault diagnosis. Two examples are given to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cui, H.; Liu, Q.; Zhang, J.; Kang, B.: An improved deng entropy and its application in pattern recognition. IEEE Access 7, 18284–18292 (2019)

    Article  Google Scholar 

  2. Wang, Z.; Jusup, M.; Shi, L.; Lee, J.H.; Iwasa, Y.; Boccaletti, S.: Exploiting a cognitive bias promotes cooperation in social dilemma experiments. Nature Commun. 9(2954), 1–7 (2018)

    Google Scholar 

  3. Zhou, D.; Al-Durra, A.; Zhang, K.; Ravey, A.; Gao, F.: Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology. J. Power Sources 399, 314–328 (2018)

    Article  Google Scholar 

  4. Al-Jarrah, M.A.; Yaseen, M.A.; Al-Dweik, A.; Dobre, O.A.; Alsusa, E.: Decision fusion for iot-based wireless sensor networks. IEEE Int. Things J. 7(2), 1313–1326 (2020)

    Article  Google Scholar 

  5. Al-Jarrah, M.A.; Al-Dweik, A.; Ikki, S.S.; Alsusa, E.: Spectrum-occupancy aware cooperative spectrum sensing using adaptive detection. IEEE Syst. J. 14(2), 2225–2236 (2020)

    Article  Google Scholar 

  6. Al-Jarrah, M.A.; Al-Dweik, A.; Kalil, M.; Ikki, S.S.: Decision fusion in distributed cooperative wireless sensor networks. IEEE Trans. Veh. Technol. 68(1), 797–811 (2019)

    Article  Google Scholar 

  7. Jiang, W.; Huang, K.; Geng, J.; Deng, X.: Multi-Scale Metric Learning for Few-Shot Learning. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2020.2995754 (2020)

  8. Liu, B.; Deng, Y.: Risk evaluation in failure mode and effects analysis based on D numbers theory. Int. J. Comput. Commun. Control 14(5), 672–691 (2019)

  9. Zhang, X.; Mahadevan, S.; Sankararaman, S.; Goebel, K.: Resilience-based network design under uncertainty. Reliab. Eng. Syst. Safety 169, 364–379 (2018)

    Article  Google Scholar 

  10. Zhang, H.; Li, X.; Deng, X.; Jiang, W.: A novel method of evidential network reasoning based on the logical reasoning rules and conflict measure. IEEE Access 8, 78015–78028 (2020)

    Article  Google Scholar 

  11. Zhang, X.; Mahadevan, S.: Aircraft re-routing optimization and performance assessment under uncertainty. Decis. Support Syst. 96, 67–82 (2017)

    Article  Google Scholar 

  12. Zhang, H.; Jiang, W.; Deng, X.: Data-driven multi-attribute decision-making by combining probability distributions based on compatibility and entropy. Appl. Intell. 50(11), 4081–4093 (2020)

    Article  Google Scholar 

  13. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, X.; Jiang, W.; Wang, Z.: Zero-sum polymatrix games with link uncertainty: A Dempster-Shafer theory solution. Appl. Math. Comput. 340, 101–112 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Chao, F.; Chang, W.; Liu, W.; Yang, S.: Data-driven group decision making for diagnosis of thyroid nodule. Sci. China-Inf. Sci. 62(11), 212205 (2019)

    Article  MathSciNet  Google Scholar 

  16. Chao, F.; Chang, W.; Xue, M.; Yang, S.: Multiple criteria group decision making with belief distributions and distributed preference relations. Eur. J. Oper. Res. 273(2), 623–633 (2019)

    Article  MathSciNet  Google Scholar 

  17. He, Z.; Jiang, W.: An evidential Markov decision making model. Inf. Sci. 467, 357–372 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, Z.; Jiang, W.: An evidential dynamical model to predict the interference effect of categorization on decision making. Knowl.-Based Syst. 150, 139–149 (2018)

    Article  Google Scholar 

  19. Jiang, W.: A correlation coefficient for belief functions. Int. J. Approx. Reasoning 103, 94–106 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhou, D.; Al-Durra, A.; Gao, F.; Ravey, A.; Matraji, I.; Godoy Simoes, M.: Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach. J. Power Sources 366, 278–291 (2017)

    Article  Google Scholar 

  21. Zhang, L.; Xianguo, W.; Zhu, H.; AbouRizk, S.M.: Perceiving safety risk of buildings adjacent to tunneling excavation: An information fusion approach. Autom. Constr. 73, 88–101 (2017)

    Article  Google Scholar 

  22. Zhang, H.; Deng, Y.: Weighted belief function of sensor data fusion in engine fault diagnosis. Soft. Comput. 24(3), 2329–2339 (2020)

    Article  MathSciNet  Google Scholar 

  23. Zhang, X.; Mahadevan, S.; Deng, X.: Reliability analysis with linguistic data: An evidential network approach. Reliab. Eng. Syst. Safety 162, 111–121 (2017)

    Article  Google Scholar 

  24. Kang, B.; Deng, Y.: The maximum Deng entropy. IEEE Access 7(1), 120758–120765 (2019)

    Article  Google Scholar 

  25. Gao, X.; Deng, Y.: The Pseudo–Pascal triangle of maximum deng entropy. Int. J. Comput. Commun. Control 15(1), 1006 (2020)

    Article  Google Scholar 

  26. Deng, X.; Han, D.; Dezert, J.; Deng, Y.; Shyr, Yu: Evidence combination from an evolutionary game theory perspective. IEEE Trans. Cybern. 46(9), 2070–2082 (2016)

    Article  Google Scholar 

  27. Xiaoyan, S.; Li, L.; Qian, H.; Sankaran, M.; Deng, Y.: A new rule to combine dependent bodies of evidence. Soft. Comput. 23(20), 9793–9799 (2019)

    Article  MATH  Google Scholar 

  28. Xiao, F.: Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf. Fusion 46(2019), 23–32 (2019)

    Article  Google Scholar 

  29. Akyar, E.; Akyar, H.; Ali Duezce, S.: Fuzzy risk analysis based on a geometric ranking method for generalized trapezoidal fuzzy numbers. J. Intell. Fuzzy Syst. 25(1), 209–217 (2013)

    Article  MATH  Google Scholar 

  30. Fei, L.; Deng, Y.: Multi-criteria decision making in pythagorean fuzzy environment. Appl. Intell. 50(2), 537–561 (2020)

    Article  Google Scholar 

  31. Geng, J.; Ma, X.; Zhou, X.; Wang, H.: Saliency-Guided deep neural networks for SAR image change detection. IEEE Trans. Geosci. Remote Sens. 57, 1–13 (2019)

    Article  Google Scholar 

  32. Liao, H.; Zeshui, X.; Zeng, X.-J.: Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Inf. Sci. 271, 125–142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chang Chou, C.: A generalized similarity measure for fuzzy numbers. J. Intell. Fuzzy Syst. 30(2), 1147–1155 (2016)

    Article  MATH  Google Scholar 

  34. Feng, F.; Fujita, H.; Ali, M.I.; Yager, R.R.; Liu, X.: Another view on generalized intuitionistic fuzzy soft sets and related multiattribute decision making methods. IEEE Trans. Fuzzy Syst. 27(3), 474–488 (2019)

    Article  Google Scholar 

  35. Zheng, Y.; Zeshui, X.; He, Y.; Liao, H.: Severity assessment of chronic obstructive pulmonary disease based on hesitant fuzzy linguistic COPRAS method. Appl. Soft Comput. 69, 60–71 (2018)

    Article  Google Scholar 

  36. Zhang, S.; Song, X.; Zhang, W.; Dejian, Yu; Chen, K.: A hybrid approach combining an extended BBO algorithm with an intuitionistic fuzzy entropy weight method for QoS-aware manufacturing service supply chain optimization. Neurocomputing 272, 439–452 (2018)

    Article  Google Scholar 

  37. Deng, X.; Jiang, W.: D number theory based game-theoretic framework in adversarial decision making under a fuzzy environment. Int. J. Approx. Reason. 106, 194–213 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Deng, X.; Jiang, W.: Evaluating green supply chain management practices under fuzzy environment: a novel method based on D number theory. Int. J. Fuzzy Syst. 21(5), 1389–1402 (2019)

    Article  Google Scholar 

  39. Kang, B.; Zhang, P.; Gao, Z.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R.: Environmental assessment under uncertainty using Dempster-Shafer theory and Z-numbers. J. Ambient Intell. Humaniz. Comput. 11(5), 2041–2060 (2019)

    Article  Google Scholar 

  40. Mo, H.; Deng, Y.: A new MADA methodology based on D numbers. Int. J. Fuzzy Syst. 20(8), 2458–2469 (2018)

    Article  MathSciNet  Google Scholar 

  41. Xiao, F.: A multiple-criteria decision-making method based on D numbers and belief entropy. Int. J. Fuzzy Syst. 21(4), 1144–1153 (2019)

    Article  MathSciNet  Google Scholar 

  42. Jiang, W.; Cao, Y.; Deng, X.: A Novel Z-network Model Based on Bayesian Network and Z-number. IEEE Trans. Fuzzy Syst. 28(8), 1585–1599 (2019)

    Article  Google Scholar 

  43. Deng, X.; Jiang, W.: A total uncertainty measure for D numbers based on belief intervals. Int. J. Intell. Syst. 34(12), 3302–3316 (2019)

    Article  Google Scholar 

  44. Kang, B.; Deng, Y.; Hewage, K.; Sadiq, R.: A method of measuring uncertainty for Z-number. IEEE Trans. Fuzzy Syst. 27(4), 731–738 (2018)

    Article  Google Scholar 

  45. Huang, Z.; Yang, L.; Jiang, W.: Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian Networks. Appl. Math. Comput. 347, 417–428 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, L.; Xianguo, W.; Qin, Y.; Skibniewski, M.J.; Liu, W.: Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage. Risk Anal. 36(2), 278–301 (2016)

    Article  Google Scholar 

  47. Zhu, P.; Zhi, Q.; Guo, Y.; Wang, Z.: Analysis of epidemic spreading process in adaptive networks. IEEE Trans. Circuits Syst. II: Express Briefs 10, 1 (2018)

    Google Scholar 

  48. Mao, S.; Han, Y.; Deng, Y.; Pelusi, D.: A hybrid DEMATEL-FRACTAL method of handling dependent evidences. Eng. Appl. Artif. Intell. 91: https://doi.org/10.1016/j.engappai.2020.103543, (2020)

  49. Zhou, X.; Hu, Y.; Deng, Y.; Chan, F.T.S.; Ishizaka, A.: A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP. Ann. Oper. Res. 271(2), 1045–1066 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yager, R.R.; Petry, F.: An intelligent quality-based approach to fusing multi-source probabilistic information. Inf. Fusion 31, 127–136 (2016)

    Article  Google Scholar 

  51. Li, D.; Deng, Y.; Gao, X.: A generalized expression for information quality of basic probability assignment. IEEE Access 7(1), 174734–174739 (2019)

    Article  Google Scholar 

  52. Li, D.; Deng, Y.: A new correlation coefficient based on generalized information quality. IEEE Access 7(1), 175411–175419 (2019)

    Article  Google Scholar 

  53. Cao, X.; Deng, Y.: A new geometric mean FMEA method based on information quality. IEEE Access 7(1), 95547–95554 (2019)

    Article  Google Scholar 

  54. Yager, R.R.; Alajlan, N.: An intelligent interactive approach to group aggregation of subjective probabilities. Knowl.-Based Syst. 83, 170–175 (2015)

    Article  Google Scholar 

  55. Gini, C.: Variabilitá e mutabilitá. Reprinted in Memorie di metodologica statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi (1955)

  56. Capriotti, E.; Fariselli, P.; Rossi, I.; Casadio, R.: A shannon entropy-based filter detects high- quality profile-profile alignments in searches for remote homologues. Proteins: Struct., Funct., Bioinf. 54(2), 351–360 (2004)

    Article  Google Scholar 

  57. Cohen, W.E.; Mahafzah, B.A.: Statistical analysis of message passing programs to guide computer design. Proceedings of the Thirty-First Hawaii International Conference on System Sciences 7, 544–553 (1998)

  58. Mahafzah, B.A.; Cohen, W.E.: Verification of the Burst Queuing System Model for Parallel Programs. International Conference on Parallel and Distributed Processing Techniques and Applications 5, 2398–2402 (1999)

  59. Basel A. M.: Message Passing Programs’ Measured Characteristics: Performance Analysis and Evaluation. 01 (2011)

  60. Li, Y.; Xiao, F.: Aggregation of uncertainty data based on ordered weighting aggregation and generalized information quality. Int. J. Intell. Syst. 34(7), 1653–1666 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially supported by National Science and Technology Major Project (Program No. 2017-V-0011-0062), Peak Experience Plan in Northwestern Polytechnical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Jiang, W. & Deng, X. A New Method to Measure the Information Quality Based on Shannon Entropy. Arab J Sci Eng 46, 3691–3700 (2021). https://doi.org/10.1007/s13369-020-05183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05183-1

Keywords

Navigation