Skip to main content
Log in

Photocatalytic of Congo Red Decolorization in the Presence of Ag/AgCl/TiO2 Nanocomposite: Optimization of Process with Taguchi Method

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, Ag/AgCl/TiO2 nanocomposites were synthesized by deposition–precipitation along photoreduction method and their photocatalytic performance was tested for removal of congo red under visible-light irradiation. Design of experiment with Taguchi method was employed to optimize synthesis parameters of composite such as the loading percentage of silver, the type of chlorine precursor, the duration of UV light radiation, the calcination temperature and the ratio of chloride to silver and also process parameters including photocatalyst dosage and dye concentration. According to results, dye concentration and type of chlorine precursor are significant factors. The optimal level of factors was precursor HCl, Cl/Ag ratio 2, silver loading 70%, 30 min exposure to UV light radiation, without calcination and photocatalyst dosage 700 ppm. The under optimum condition, high concentrations of congo red can be removed with high efficiency (96, 91 and 86% removal at concentration 30, 50 and 70 ppm, respectively). The synthesized nanocomposites were characterized by X-ray diffraction, scanning electron microscopy and UV–vis diffuse reflectance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chan, S.H.S.; Wu, T.Y.; Juan, J.C.; Teh, C.Y.: Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 86, 1130–1158 (2011)

    Article  Google Scholar 

  2. Bansal, P.; Singh, D.; Sud, D.: Photocatalytic degradation of azo dye in aqueous TiO2 suspension: Reaction pathway and identification of intermediates products by LC/MS. Sep. Purif. Technol. 72, 357–365 (2010)

    Article  Google Scholar 

  3. Lin, W.C.; Yang, W.D.; Jheng, S.Y.: Photocatalytic degradation of dyes in water using porous nanocrystalline titanium dioxide. J. Taiwan Inst. Chem. Eng. 43, 269–274 (2012)

    Article  Google Scholar 

  4. Daneshvar, N.; Khataee, A.; Rasoulifard, M.H.; Pourhassan, M.: Biodegradation of dye solution containing Malachite Green: optimization of effective parameters using Taguchi method. J. Hazard. Mater. 143, 214–219 (2007)

    Article  Google Scholar 

  5. Kang, X.; Xia, Z.; Chen, R.; Sun, H.; Yang, W.: Effects of inorganic ions, organic polymers, and fly ashes on the sedimentation characteristics of kaolinite suspensions. Appl. Clay Sci. 181, 105220 (2019)

    Article  Google Scholar 

  6. Rauf, M.; Meetani, M.; Hisaindee, S.: An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276, 13–27 (2011)

    Article  Google Scholar 

  7. Soutsas, K.; Karayannis, V.; Poulios, I.; Riga, A.; Ntampegliotis, K.; Spiliotis, X.; Papapolymerou, G.: Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes. Desalination 250, 345–350 (2010)

    Article  Google Scholar 

  8. Umar, M.; Aziz, H.A.: Photocatalytic Degradation of Organic Pollutants in Water. Risk and Treatment. IntechOpen, London (2013)

    Google Scholar 

  9. Boutra, B.; Güy, N.; Özacar, M.; Trari, M.: Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic degradation of Congo Red under visible light. J. Magn. Magn. Mater. 497, 165994 (2020)

    Article  Google Scholar 

  10. Zhang, Z.; Yates Jr., J.T.: Direct observation of surface-mediated electron–hole pair recombination in TiO2 (110). J. Phys. Chem. C 114, 3098–3101 (2010)

    Article  Google Scholar 

  11. Zhang, Y.; Tang, Z.R.; Fu, X.; Xu, Y.J.: Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Appl. Catal. B 106, 445–452 (2011)

    Article  Google Scholar 

  12. Nakata, K.; Fujishima, A.: TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13, 169–189 (2012)

    Article  Google Scholar 

  13. Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X.: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014)

    Article  Google Scholar 

  14. Zhou, J.; Cheng, Y.; Yu, J.: Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films. J. Photochem. Photobiol. A. 223, 82–87 (2011)

    Article  Google Scholar 

  15. Xu, H.; Li, H.; Xia, J.; Yin, S.; Luo, Z.; Liu, L.; Xu, L.: One-pot synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl in ionic liquid. ACS Appl. Mater. Interfaces 3, 22–29 (2010)

    Article  Google Scholar 

  16. Liang, X.; Wang, P.; Li, M.; Zhang, Q.; Wang, Z.; Dai, Y.; Zhang, X.; Liu, Y.; Whangbo, M.H.; Huang, B.: Adsorption of gaseous ethylene via induced polarization on plasmonic photocatalyst Ag/AgCl/TiO2 and subsequent photodegradation. Appl. Catal. B 220, 356–361 (2018)

    Article  Google Scholar 

  17. Liu, R.; Wang, P.; Wang, X.; Yu, H.; Yu, J.: UV-and visible-light photocatalytic activity of simultaneously deposited and doped Ag/Ag (I)–TiO2 photocatalyst. J. Phys. Chem. C 116, 17721–17728 (2012)

    Article  Google Scholar 

  18. Liu, W.; Chen, D.; Yoo, S.H.; Cho, S.O.: Hierarchical visible-light-response Ag/AgCl@ TiO2 plasmonic photocatalysts for organic dye degradation. Nanotechnology 24, 405706 (2013)

    Article  Google Scholar 

  19. Yang, Y.; Zhang, G.; Xu, W.: Facile synthesis and photocatalytic properties of AgAgClTiO2/rectorite composite. J. Colloid Interface Sci. 376, 217–223 (2012)

    Article  Google Scholar 

  20. Edrissi, M.; Samadanian-Isfahani, S.; Soleymani, M.: Preparation of cobalt molybdate nanoparticles; Taguchi optimization and photocatalytic oxidation of Reactive Black 8 dye. Powder Technol. 249, 378–385 (2013)

    Article  Google Scholar 

  21. Balak, Z.; Zakeri, M.; Rahimipour, M.; Salahi, E.: Taguchi design and hardness optimization of ZrB2-based composites reinforced with chopped carbon fiber and different additives and prepared by SPS. J. Alloys Compd. 639, 617–625 (2015)

    Article  Google Scholar 

  22. Nakhostin-Panahi, P.; Salari, D.; Niaei, A.; Mousavi, S.M.: Study of M-ZSM-5 nanocatalysts (M: Cu, Mn, Fe, Co…) for selective catalytic reduction of NO with NH3: Process optimization by Taguchi method. Chin. J. Chem. Eng. 23, 1647–1654 (2015)

    Article  Google Scholar 

  23. Nakhostin-Panahi, P.; Mohajer, SH.; Rasoulifard, M.H.; Farajmand, B.: Synthesis of Ag/AgCl/TiO2 nanocomposite and study of photocatalytic activity in VOCs removal from gas phase. Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1751146

  24. Jie, H.; Jie, M.; Jiahua, M.; Huang, H.: Preparation of LaMnO3/graphene thin films and their photocatalytic activity. J. Rare Earths 328, 1126–1134 (2014)

    Google Scholar 

  25. Yin, H.; Wang, X.; Wang, L.; Nie, Q.; Zhang, Y.; Yuanet, Q.; Wu, W.: Ag/AgCl modified self-doped TiO2 hollow sphere with enhanced visible light photocatalytic activity. J. Alloys Compd. 657, 44–52 (2016)

    Article  Google Scholar 

  26. Luo, L.; Li, Y.; Hou, J.; Yang, Y.: Visible photocatalysis and photostability of Ag3PO4 photocatalyst. Appl. Surf. Sci. 319, 332–338 (2014)

    Article  Google Scholar 

  27. Ilyas, S.; Lee, J.C.; Bhatti, H.N.: One step bioleaching of sulphide ore with low concentration of arsenic by Aspergillus niger and Taguchi Orthogonal Array Optimization. Chin. J. Chem. Eng. 20, 923–929 (2012)

    Article  Google Scholar 

  28. Varshosaz, J.; Eskandari, S.; Tabakhian, M.: Production and optimization of valproic acid nanostructured lipid carriers by the Taguchi design. Pharm. Dev. Technol. 15, 89–96 (2010)

    Article  Google Scholar 

  29. Tian, B.; Dong, R.; Zhang, J.; Bao, S.; Yang, F.; Zhang, J.: Sandwich-structured AgCl@ Ag@ TiO2 with excellent visible-light photocatalytic activity for organic pollutant degradation and E. coli K12 inactivation. Appl. Catal. B. 158, 76–84 (2014)

    Article  Google Scholar 

  30. Yang, Y.; Zhang, G.: Preparation and photocatalytic properties of visible light driven AgAgBr/attapulgite nanocomposite. Appl. Clay Sci. 67, 11–17 (2012)

    Article  Google Scholar 

  31. Liu, J.; Wu, W.; Tian, Q.; Yang, S.; Sun, L.; Xiao, X.; Ren, F.; Jiang, C.; Roy, V.A.: Tube-like α-Fe2O3@ Ag/AgCl heterostructure: controllable synthesis and enhanced plasmonic photocatalytic activity. RSC Adv. 5, 61239–61248 (2015)

    Article  Google Scholar 

  32. Yang, L.; Ma, X.; Zhang, W.; Gen, W.: Ag@AgCl-TiO2/organic rectorite/quaternize chitosan microspheres: an efficient and environmental photocatalyst. J. Appl. Poly. Sci. 134, 11 (2017)

    Google Scholar 

  33. Feng, Z.; Lv, X.; Wang, T.: TiO2 porous ceramic/Ag–AgCl composite for enhanced photocatalytic degradation of dyes under visible light irradiation. J. Porous Mater. 25, 189–198 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from University of Zanjan and Iranian Nanotechnology Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaneh Nakhostin Panahi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhostin Panahi, P., Mohajer, S. & Rasoulifard, M.H. Photocatalytic of Congo Red Decolorization in the Presence of Ag/AgCl/TiO2 Nanocomposite: Optimization of Process with Taguchi Method. Arab J Sci Eng 46, 5619–5632 (2021). https://doi.org/10.1007/s13369-020-05157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05157-3

Keywords

Navigation