Skip to main content
Log in

Reproducibility of Replicated Trabecular Bone Structures from Ti6Al4V Extralow Interstitials Powder by Selective Laser Melting

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The field of orthopedic regenerative medical studies has begun to use porous metal structures for biomedical implants, which have lower strength and ingrowth behavior, similar to bones. It is possible to produce such porous metal structures with a designable microarchitecture or replicated topology by additive manufacturing. The main purpose of using these artificial pore geometries in the biomedical field is to increase the biocompatibility of the product by imitating the bone. In this study, bone samples from the femoral and vertebral regions of a sheep were obtained and scanned by microfocus computed tomography (Micro-CT). Trabecular bone models were produced from Ti6Al4V extralow interstitials powder using the selective laser melting with 1:1, 1:1.25, and 1:1.50 scales. The produced samples were scanned using Micro-CT, and 3D models were formed. The 3D models of the trabecular bone and samples were aligned in a computer environment to determine deviations in both size and angle of arms in the trabecular structure. It was found that the deviations decreased when the angle was above 60°, whereas they significantly increased with the size below 150 microns. The size distribution and interconnectivity ratio of the pores formed in the production was obtained from the PNMs. It was determined that the mean equivalent diameters of vertebra and femoral pores, from the pore network models are 767 ± 265 µm and 623 ± 245 µm, and concluded that the samples produced in the scale of 1: 1 and 1: 1.25 could represent the pore size distribution in the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hing, K.A.; Best, S.M.; Bonfield, W.: Characterization of porous hydroxyapatite. J. Mater. Sci. Mater. Med. 10(3), 135–145, 1999

    Article  Google Scholar 

  2. Billiet, T.; Gevaert, E.; De Schryver, T.; Cornelissen, M.; Dubruel, P.: The 3D printing of gelatinmethacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35(1), 49–62, 2014

    Article  Google Scholar 

  3. Mooney, D.J.; Sano, K.; Matthias Kaufmann, P.; Majahod, K.; Schloo, B.; Vacanti, J.P.; et al.: Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J. Biomed. Mater. Res. 37(3), 413–420, 1997

    Article  Google Scholar 

  4. Hurtado, A.; Moon, L.D.F.; Maquet, V.; Blits, B.; Jérôme, R.; Oudega, M.: Poly (d,l-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials 27(3), 430–442, 2006

    Article  Google Scholar 

  5. Jones, A.C.; Arns, C.H.; Hutmacher, D.W.; Milthorpe, B.K.; Sheppard, A.P.; Knackstedt, M.A.: The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 30(7), 1440–1451, 2009

    Article  Google Scholar 

  6. Currey, J.D.: Bones: structure and mechanics, pp. 5–456. Princeton University Press, Princeton (2006)

    Google Scholar 

  7. Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Mater. Today 16(12), 496–504, 2013

    Article  Google Scholar 

  8. Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; et al.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83, 127–141, 2016

    Article  Google Scholar 

  9. Hutmacher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24), 2529–2543, 2000

    Article  Google Scholar 

  10. Ponader, S.; von Wilmowsky, C.; Widenmayer, M.; Lutz, R.; Heinl, P.; Körner, C.; et al.: In vivo performance of selective electron beam-melted Ti–6Al–4V structures. J. Biomed. Mater. Res. Part A 92(1), 56–62, 2010

    Article  Google Scholar 

  11. Palmquist, A.; Emanuelsson, L.; Thomsen, P.; Palmquist, A.; Snis, A.; Emanuelsson, L.; et al.: Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep. J. Biomater. Appl. 27(8), 1003–1016, 2013

    Article  Google Scholar 

  12. Murr, L.E.: Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting. J. Mech. Behav. Biomed. Mater. 76, 164–177, 2017

    Article  Google Scholar 

  13. Li, X.; Chu, C.; Zhou, L.; Bai, J.; Guo, C.; Xue, F.; et al.: Fully degradable PLA-based composite reinforced with 2D-braided Mg wires for orthopedic implants. Compos. Sci. Technol. 142, 180–188, 2017

    Article  Google Scholar 

  14. Al-Tamimi, A.A.; Peach, C.; Fernandes, P.R.; Cseke, A.; Bartolo, P.J.D.S.: Topology optimization to reduce the stress shielding effect for orthopedic applications. Procedia CIRP 65, 202–206, 2017

    Article  Google Scholar 

  15. Tan, X.P.; Tan, Y.J.; Chow, C.S.L.; Tor, S.B.; Yeong, W.Y.: Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater. Sci. Eng. C 76, 1328–1343, 2017

    Article  Google Scholar 

  16. Zaharin, H.A.; Abdul Rani, A.M.; Azam, F.I.; Ginta, T.L.; Sallih, N.; Ahmad, A.; et al.: Effect of unit cell type and pore size on porosity and mechanical behavior of additively manufactured Ti6Al4V scaffolds. Materials 11(12), 2402, 2018

    Article  Google Scholar 

  17. Wang, Y.; Arabnejad, S.; Tanzer, M.; Pasini, D.: Hip implant design with three-dimensional porous architecture of optimized graded density. J. Mech. Des. 140(11), 111406, 2018

    Article  Google Scholar 

  18. Itälä, A.I.; Ylänen, H.O.; Ekholm, C.; Karlsson, K.H.; Aro, H.T.: Pore diameter of more than 100 μm is not requisite for bone ingrowth in rabbits. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 58(6), 679–683, 2001

    Google Scholar 

  19. Kuboki, Y.; Jin, Q.; Takita, H.: Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. JBJS 83(1), 105–115, 2001

    Google Scholar 

  20. Structure of Bones|Biology for MajorsI. https://courses.lumenlearning.com/wmbiology2/chapter/structure-of-bones/. Access date: 16 Nisan 2019

  21. Tsuruga, E.; Takita, H.; Itoh, H.; Wakisaka, Y.; Kuboki, Y.: Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 121(2), 317–324, 1997

    Article  Google Scholar 

  22. de Wild, M.; Zimmermann, S.; Rüegg, J.; Schumacher, R.; Fleischmann, T.; Ghayor, C.; et al.: Influence of microarchitecture on osteoconduction and mechanics of porous titanium scaffolds generated by selective laser melting. 3D Print. Addit. Manuf. 3(3), 142–151, 2016

    Article  Google Scholar 

  23. Rouwkema, J.; Rivron, N.C.; van Blitterswijk, C.A.: Vascularization in tissue engineering. Trends Biotechnol. 26(8), 434–441, 2008

    Article  Google Scholar 

  24. Kumar, A.; Nune, K.C.; Murr, L.E.; Misra, R.D.K.: Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process-structure-property paradigm. Int. Mater. Rev. 61(1), 20–45, 2016

    Article  Google Scholar 

  25. Eli, T.: Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted. J. Mech. Behav. Biomed. Mater. 43, 91–100, 2015

    Article  Google Scholar 

  26. Ahmadi, S.M.; Yavari, S.A.; Wauthle, R.; Pouran, B.; Schrooten, J.; Weinans, H.; Zadpoor, A.A.: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties. Materials 8(4), 1871–1896, 2015

    Article  Google Scholar 

  27. Wieding, J.; Wolf, A.; Bader, R.: Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J. Mech. Behav. Biomed. Mater. 37, 56–68, 2014

    Article  Google Scholar 

  28. Parthasarathy, J.; Starly, B.; Raman, S.; Christensen, A.: Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3(3), 249–259, 2010

    Article  Google Scholar 

  29. Wauthle, R.; Van Der Stok, J.; Yavari, S.A.; Van Humbeeck, J.; Kruth, J.P.; Zadpoor, A.A.; et al.: Additively manufactured porous tantalum implants. ActaBiomater. 14, 217–225, 2015

    Google Scholar 

  30. Kadkhodapour, J.; Montazerian, H.; Darabi, A.C.; Anaraki, A.P.; Ahmadi, S.M.; Zadpoor, A.A.; et al.: Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell. J. Mech. Behav. Biomed. Mater. 50, 180–191, 2015

    Article  Google Scholar 

  31. Wauthle, R.; Vrancken, B.; Beynaerts, B.; Jorissen, K.; Schrooten, J.; Kruth, J.P.; et al.: Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit. Manuf. 5, 77–84, 2015

    Google Scholar 

  32. Arabnejad, S.; Burnett Johnston, R.; Pura, J.A.; Singh, B.; Tanzer, M.; Pasini, D.: High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. ActaBiomater. 30, 345–356, 2016

    Google Scholar 

  33. Fantini, M.; Curto, M.; De Crescenzio, F.: A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices. Virtual Phys. Prototyp. 11(2), 77–90, 2016

    Article  Google Scholar 

  34. Liang, H.; Yang, Y.; Xie, D.; Li, L.; Mao, N.; Wang, C.; et al.: Trabecular-like Ti–6Al–4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. J. Mater. Sci. Technol. 35(7), 1284–1297, 2019

    Article  Google Scholar 

  35. Barak, M.M.; Black, M.A.: A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength. J. Mech. Behav. Biomed. Mater. 78, 455–464, 2018

    Article  Google Scholar 

  36. Wood, Z.; Lynn, L.; Nguyen, J.T.; Black, M.A.; Patel, M.; Barak, M.M.: Are we crying Wolff? 3D printed replicas of trabecular bone structure demonstrate higher stiffness and strength during off-axis loading. Bone 127, 635–645, 2019

    Article  Google Scholar 

  37. Cheng, A.; Humayun, A.; Cohen, D.J.; Boyan, B.D.; Schwartz, Z.: Additively manufactured 3D porous Ti–6Al–4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 6(4), 1–12, 2014

    Article  Google Scholar 

  38. Shipley, H.; McDonnell, D.; Culleton, M.; Coull, R.; Lupoi, R.; O’Donnell, G.; et al.: Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti–6Al–4V: a review. Int. J. Mach. Tools Manuf. 128, 1–20, 2018

    Article  Google Scholar 

  39. Attar, H.; Calin, M.; Zhang, L.C.C.; Scudino, S.; Eckert, J.: Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng. A 593, 170–177, 2014

    Article  Google Scholar 

  40. Liu, L.; Kamm, P.; García-Moreno, F.; Banhart, J.; Pasini, D.: Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting. J. Mech. Phys. Solids 107, 160–184, 2017

    Article  MathSciNet  Google Scholar 

  41. Bagheri, Z.S.; Melancon, D.; Liu, L.; Johnston, R.B.; Pasini, D.: Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with selective laser melting. J. Mech. Behav. Biomed. Mater. 70, 17–27, 2017

    Article  Google Scholar 

  42. Bael, S.V.; Kerckhofs, G.; Moesen, M.; Pyka, G.; Schrooten, J.; Kruth, J.P.: Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater. Sci. Eng. A 528(24), 7423–7431, 2011

    Article  Google Scholar 

  43. Mazur, M.; Leary, M.; McMillan, M.; Sun, S.; Shidid, D.; Brandt, M.: Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM). In: Brandt, M. (ed.) Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Chap. 5, pp. 119–161, 1st edn. Elsevier Science & Technology (2016). https://doi.org/10.1016/B978-0-08-100433-3.00005-1

  44. Gu, D.; Hagedorn, Y.-C.; Meiners, W.; Meng, G.; Batista, R.J.S.; Wissenbach, K.; et al.: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60(9), 3849–3860, 2012

    Article  Google Scholar 

  45. Leuders, S.; Thöne, M.; Riemer, A.; Niendorf, T.; Tröster, T.; Richard, H.A.A.; et al.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300–307, 2013

    Article  Google Scholar 

  46. Murr, L.E.; Quinones, S.A.; Gaytan, S.M.; Lopez, M.I.; Rodela, A.; Martinez, E.Y.; et al.: Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2(1), 20–32, 2009

    Article  Google Scholar 

  47. Murr, L.E.; Esquivel, E.V.; Quinones, S.A.; Gaytan, S.M.; Lopez, M.I.; Martinez, E.Y.; et al.: Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater. Charact. 60(2), 96–105, 2009

    Article  Google Scholar 

  48. Vilaro, T.; Colin, C.; Bartout, J.D.: As-fabricated and heat-treated microstructures of the Ti–6Al–4V alloy processed by selective laser melting. Metall. Mater. Trans. A 42(10), 3190–3199, 2011

    Article  Google Scholar 

  49. Thijs, L.; Verhaeghe, F.; Craeghs, T.; Humbeeck, J.V.; Kruth, J.-P.P.: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58(9), 3303–3312, 2010

    Article  Google Scholar 

  50. Attar, H.; Bönisch, M.; Calin, M.; Zhang, L.-C.; Scudino, S.; Eckert, J.: Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. Acta Mater. 76, 13–22, 2014

    Article  Google Scholar 

  51. Kasperovich, G.; Haubrich, J.; Gussone, J.; Requena, G.: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater. Des. 105, 160–170, 2016

    Article  Google Scholar 

  52. Tobergte, D.R.; Curtis, S.: Defect morphology in Ti–6AL–4V parts fabricated by selective laser melting and electron beam melting. J. Chem. Inf. Model. 53(9), 1689–1699, 2013

    Google Scholar 

  53. Pang, S.; Chen, W.; Wang, W.: A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy. Metall. Mater. Trans. A 45(6), 2808–2818, 2014

    Article  Google Scholar 

  54. Yang, J.; Han, J.; Yu, H.; Yin, J.; Gao, M.; Wang, Z.; et al.: Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti–6Al–4V alloy. Mater. Des. 110, 558–570, 2016

    Article  Google Scholar 

  55. Courtois, M.; Carin, M.; Masson, P.L.; Gaied, S.; Balabane, M.: A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding. J. Phys. D Appl. Phys. 46(50), 505305, 2013

    Article  Google Scholar 

  56. Qiu, C.; Adkins, N.J.E.E.; Attallah, M.M.: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater. Sci. Eng. A 578, 230–239, 2013

    Article  Google Scholar 

  57. Stef, J.; Poulon-Quintin, A.; Redjaimia, A.; Ghanbaja, J.; Ferry, O.; De Sousa, M.; et al.: Mechanism of porosity formation and influence on mechanical properties in selective laser melting of Ti–6Al–4V parts. Mater. Des. 156, 480–493, 2018

    Article  Google Scholar 

  58. Voisin, T.; Calta, N.P.; Khairallah, S.A.; Forien, J.B.; Balogh, L.; Cunningham, R.W.; et al.: Defects-dictated tensile properties of selective laser melted Ti–6Al–4V. Mater. Des. 158, 113–126, 2018

    Article  Google Scholar 

  59. Küçükaltun, F.: Production of replicated trabecular bone structure by selective laser melting method using Ti6Al4V powder and observation of geometric accuracy, Master thesis, Gazi University, Ankara (2019)

  60. George, D.; Mallery, M.: SPSS for Windows Step by Step: A Simple Guide and Reference, pp. 112–120. Allyn & Bacon, Boston (2010)

    Google Scholar 

  61. Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B.: Using Multivariate Statistics, pp. 99–167. Pearson, Boston (2007)

    Google Scholar 

  62. N Taniguchi S Fujibayashi M Takemoto K Sasaki B Otsuki T Nakamura 2016 Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment Mater. Sci. Eng. C 59:690 701

    Article  Google Scholar 

  63. Van Bael, S.; Chai, Y.C.; Truscello, S.; Moesen, M.; Kerckhofs, G.; Van Oosterwyck, H.; et al.: The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. ActaBiomater. 8(7), 2824–2834, 2012

    Google Scholar 

  64. von Doernberg, M.-C.; von Rechenberg, B.; Bohner, M.; Grünenfelder, S.; van Lenthe, G.H.; Müller, R.; et al.: In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 27(30), 5186–5198, 2006

    Article  Google Scholar 

  65. Geiger, M.; Leitz, K.H.; Koch, H.; Otto, A.: A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod. Eng. Res. Dev. 3(2), 127–136, 2009

    Article  Google Scholar 

  66. Gong, H.; Rafi, K.; Gu, H.; Janaki Ram, G.D.D.; Starr, T.; Stucker, B.: Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 86, 545–554, 2015

    Article  Google Scholar 

  67. Pang, S.; Chen, X.; Zhou, J.; Shao, X.; Wang, C.: 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect. Opt. Lasers Eng. 74, 47–58, 2015

    Article  Google Scholar 

  68. Qiu, C.; Panwisawas, C.; Ward, M.; Basoalto, H.C.; Brooks, J.W.; Attallah, M.M.: On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 96, 72–79, 2015

    Article  Google Scholar 

  69. Liu, Y.J.: Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. J. Mech. Behav. Biomed. Mater. 60(4), 65–83, 2016

    Google Scholar 

Download references

Acknowledgments

This study is supported by Gazi University as a Scientific Research Project with number 06/2018-11. This study is supported by Gülhane Medical Design and Production Center for modeling and production. Authors thank EKTAM (Additive Manufacturing Technology Application and Research Center) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teyfik Demir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balcı, A., Küçükaltun, F., Aycan, M.F. et al. Reproducibility of Replicated Trabecular Bone Structures from Ti6Al4V Extralow Interstitials Powder by Selective Laser Melting. Arab J Sci Eng 46, 2527–2541 (2021). https://doi.org/10.1007/s13369-020-05145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05145-7

Keywords

Navigation