Skip to main content
Log in

Esterification of Salicylic acid with Succinylated Dextran Using ZrOCl2.8H2O over MCM-41: A Novel Strategy to Design Polysaccharide-Based Macromolecular Prodrugs

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

We are exploiting the use of a versatile catalyst taken from heterogeneous catalysis, i.e., ZrOCl2.8H2O to efficiently catalyze the reaction of dextran-succinate conjugate (Dex-SAn) with salicylic acid (SA) under homogeneous reaction conditions. Dextran was first linked with succinic anhydride using triethylamine as a base in DMAc to provide active functionalities (succinate moieties) situated away from the polymer chains. The resultant Dex-SAn conjugate was further esterified with SA using zirconium (IV) oxychloride octahydrate (ZrOCl2.8H2O) as a catalyst at 80 °C under N2. Reaction conditions and amount of catalyst ZrOCl2.8H2O and chiral support MCM-41 were optimized. This reaction methodology resulted in macromolecular prodrugs of SA as Dex-SAn-SA conjugates in good yield. The structures of Dex-SAn and newly synthesized Dex-SAn-SA conjugates were characterized using various spectroscopic techniques, i.e., FT-IR, 1H, and APT-13C NMR spectroscopy. The degree of substitution of SA on to Dex-SAn-SA was determined by UV/Vis spectroscopic methods. This reaction methodology can be modeled as a new protocol for facile attachment of several drug molecules onto the highly potential and biodegradable drug carrier dextran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pospieszny, T.; Brycki, B.: Design and synthesis of new conjugates of bile acids with salicylic, acetylsalicylic and nicotinic acids. Lett. Org. Chem. 13, 302–309 (2016)

    Article  Google Scholar 

  2. Steele, K.; Shirodaria, P.; O’Hare, M.; Merrett, J.D.; Irwin, W.G.; Simpson, D.I.H.; Pfister, H.: Monochloroacetic acid and 60% salicylic acid as a treatment for simple plantar warts: effectiveness and mode of action. Br. J. Dermatol. 118, 537–543 (1988)

    Article  Google Scholar 

  3. Kratk, M.; Vinsova, J.; Buchta, V.: In Vitro antibacterial and antifungal activity of salicylanilide pyrazine-2-carboxylates. Med. Chem. 8, 732–741 (2012)

    Article  Google Scholar 

  4. Dahlgren, M.K.; Kauppi, A.M.; Olsson, I.M.; Linusson, A.; Elofsson, M.: Design, synthesis, and multivariate quantitative structure-activity relationship of salicylanilides-potent inhibitors of type III secretion in Yersinia. J. Med. Chem. 50, 6177–6188 (2007)

    Article  Google Scholar 

  5. Macielag, M.J.; Demers, J.P.; Fraga-Spano, S.A.; Hlasta, D.J.; Johnson, S.G.; Kanojia, R.M.; Russel, R.K.; Sui, Z.H.; Weidner-Wells, M.A.; Werblood, H.; Foleno, B.D.; Goldschmidt, R.M.; Loeloff, M.J.; Webb, G.C.; Barrett, J.F.: Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. J. Med. Chem. 41, 2939–2945 (1998)

    Article  Google Scholar 

  6. Alfonso, L.; Ai, G.; Spitale, R.C.; Bhat, G.J.: Molecular targets of aspirin and cancer prevention. Br. J. Cancer 111, 61–67 (2014)

    Article  Google Scholar 

  7. Zhou, G.; Marathe, G.K.; Hartiala, J.; Hazen, S.L.; Allayee, H.; Tang, W.H.; McIntyre, T.M.: Aspirin hydrolysis in plasma is a variable function of butyrylcholinesterase and platelet-activating factor acetylhydrolase 1b2 (PAFAH1b2). J. Biol. Chem. 288, 11940–11948 (2013)

    Article  Google Scholar 

  8. Hussain, M.A.; Abbas, K.; Jantan, I.; Bukhari, S.N.A.: Polysaccharide-based materials in macromolecular prodrug design and development. Int. Mater. Rev. 62, 78–98 (2017)

    Article  Google Scholar 

  9. Hussain, M.A.; Abbas, K.; Amin, M.; Lodhi, B.A.; Iqbal, S.; Tahir, M.N.; Tremel, W.: Novel high-loaded, nanoparticulate and thermally stable macromolecular prodrug design of NSAIDs based on hydroxypropylcellulose. Cellulose 22, 461–471 (2015)

    Article  Google Scholar 

  10. Sobczak, M.; Witkowska, E.; Olędzka, E.; Kolodziejski, W.: Synthesis and structural analysis of polyester prodrugs of norfloxacin. Molecules 13, 96–106 (2008)

    Article  Google Scholar 

  11. Vyas, S.; Trived, P.; Chaturvedi, S.C.: Dextran-etodolac conjugates: synthesis, in vitro and in vivo evaluation. Acta Pol. Pharm. 66, 201–206 (2009)

    Google Scholar 

  12. Vyas, S.; Trived, P.; Chaturvedi, S.C.: Ketorolac-dextran conjugates: synthesis, in vitro and in vivo evaluation. Acta Pharm. 57, 441–450 (2007)

    Article  Google Scholar 

  13. Hussain, M.A.; Hassan, Z.; Haseeb, M.T.; Iqbal, M.S.; Sher, M.; Tahir, M.N.; Tremel, W.; Bashir, S.; Ahmad, R.: Fabrication of potential macromolecular prodrugs of aspirin and diclofenac with dextran. Pak. J. Pharm. Sci. 24, 575–581 (2011)

    Google Scholar 

  14. Shrivastava, S.K.; Jain, D.K.; Trivedi, P.: Dextrans- potential polymeric drug carriers for flurbiprofen. Pharmazie 58, 389–391 (2003)

    Google Scholar 

  15. Shrivastava, S.K.; Jain, D.K.; Trivedi, P.: Dextrans-potential polymeric drug carriers for suprofen. Pharmazie 58, 804–806 (2003)

    Google Scholar 

  16. Vaidya, A.A.; Lele, B.S.; Kulkarni, M.G.; Mashelkar, R.A.: Enhancing ligand-protein binding in affinity thermoprecipitation: elucidation of spacer effects. Biotechnol. Bioeng. 64, 418–425 (1999)

    Article  Google Scholar 

  17. McLeod, A.D.; Friend, D.R.; Tozera, T.N.: Synthesis and chemical stability of glucocorticoid-dextran esters: potential prodrugs for colon-specific delivery. Int. J. Pharm. 92, 105–114 (1993)

    Article  Google Scholar 

  18. Goodlett, V.W.; Dougherty, J.T.; Patton, H.W.: Characterization of cellulose acetates by nuclear magnetic resonance. J. Polym. Sci. A: Polym. Chem. 9, 155–161 (1971)

    Article  Google Scholar 

  19. Mantri, K.; Komura, K.; Sugi, Y.: ZrOCl2·8H2O catalysts for the esterification of long chain aliphatic carboxylic acids and alcohols. The enhancement of catalytic performance by supporting on ordered mesoporous silica. Green Chem. 7, 677–682 (2005)

    Article  Google Scholar 

  20. Kirumakki, S.R.; Nagaraju, N.; Murthy, K.V.V.S.B.S.R.; Narayanan, S.: Esterification of salicylic acid over zeolites using dimethyl carbonate. Appl. Catal. A-Gen. 226, 175–182 (2002)

    Article  Google Scholar 

  21. Heinze, T.; Liebert, T.; Katy, P.; Hussain, M.A.: Unconventional cellulose esters: synthesis, characterization and structure-property relations. Cellulose 10, 283–296 (2003)

    Article  Google Scholar 

  22. Lee, H.Y.; Danjo, T.; Iwata, T.: Synthesis and characterization of dextrin derivatives by heterogeneous esterification. J. Polym. Res. 25, 183 (2018)

    Article  Google Scholar 

  23. Larsen, C.: Macromolecular prodrugs. XII. Kinetics of release of naproxen from various polysaccharide ester prodrugs in neutral and alkaline solution. Int. J. Pharm. 51, 233–240 (1989)

    Article  Google Scholar 

  24. Won, C.Y.; Chu, C.C.: Dextran-estrone conjugate: synthesis and in vitro release study. Carbohydr. Polym. 36, 327–334 (1988)

    Article  Google Scholar 

  25. Draye, J.-P.; Delaey, B.; Van de Voorde, A.; Van den Bulcke, A.; Bogdanov, B.; Schacht, E.: In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19, 99–107 (1998)

    Article  Google Scholar 

Download references

Acknowledgment

Not applicable.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ajaz Hussain.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M.A., Iqbal, S., Ercisli, S. et al. Esterification of Salicylic acid with Succinylated Dextran Using ZrOCl2.8H2O over MCM-41: A Novel Strategy to Design Polysaccharide-Based Macromolecular Prodrugs. Arab J Sci Eng 46, 5583–5591 (2021). https://doi.org/10.1007/s13369-020-05143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05143-9

Keywords

Navigation