Skip to main content
Log in

Partial Oxidation of Methanol (POM) over Transition Metal-Promoted Nanostructured Gold Catalysts Supported on CeO2–ZrO2

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Partial methanol oxidation (POM) is one of the possible routes for H2 generation onboard for fuel cell-driven vehicles. The reaction was carried out with a stoichiometric ratio of CH3OH to O2 in the feed following the equation CH3OH + ½O2 → CO2 + 2H2. Transition metals (Fe, Ni, Co, Cu, and Zn) were used as a promoter over Au/CeO2–ZrO2 to catalyze POM reaction in the temperature range of 325–450 °C. The support was prepared from mechanically mixing of CeO2 and ZrO2. Transition metals were deposited using the impregnation method, and the deposition–precipitation method was used to deposit Au on the samples containing transition metals. A combination of methods like low-temperature N2 adsorption, powder XRD, TPR with H2, and XPS were used to evaluate the physicochemical, structural, and surface properties of the synthesized catalysts. Fe- and Cu-promoted catalysts were found less attractive due to low H2 selectivity. Ni- and Co-promoted catalysts showed a promising H2 selectivity but suffered from high CO selectivity. Interestingly, over 83% selectivity toward H2 and less than a 16% CO selectivity with 95% CH3OH conversion were found for Zn-modified Au/CeO2–ZrO2 samples at 450 °C, giving the highest yield for H2 (~ 80%) among all the investigated catalysts in this study, which makes it a promising catalyst for this process. Moreover, below 400 °C, Zn-promoted catalyst showed the lowest CO selectivity compared to Co- and Ni-promoted one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Srinivasan, S.; Velev, O.: High energy efficiency and high-power density proton exchange membrane fuel cells-electrode kinetics and mass transport. J. Power 36, 299–320 (1991)

    Google Scholar 

  2. Amphlett, J.; Creber, K.; Davis, J.; Mann, R.; Peppley, B.; Stokes, D.: Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells. Int. J. Hydrogen Energy 19, 131–137 (1994)

    Google Scholar 

  3. Gurau, B.; Smotkin, E.: Methanol crossover in direct methanol fuel cells: a link between power and energy density. J. Power Sources 112, 339–352 (2002)

    Google Scholar 

  4. Jolaoso, L.; Zaman, S.F.: Catalytic ammonia decomposition for hydrogen production: utilization of ammonia in a fuel cell. In: Inamuddin, Boddula, R., Asiri, A. (eds.) Sustainable Ammonia Production. Green Energy and Technology, pp. 81–105. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35106-9_5

    Chapter  Google Scholar 

  5. Chang, F.W.; Yu, H.Y.; Roselin, L.S.; Yang, H.C.; Ou, T.C.: Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2–MOx (M = Fe Co, Zn) composite oxides. Appl. Catal. A Gen. 302, 157–167 (2006)

    Google Scholar 

  6. Ubago-Pérez, R.; Carrasco-Marin, F.; Moreno-Castilla, C.: Carbon-supported Pt as catalysts for low-temperature methanol decomposition to carbon monoxide and hydrogen. Appl. Catal. A Gen. 275, 119–126 (2004)

    Google Scholar 

  7. Xi, J.; Wang, Z.; Lu, G.: Improvement of Cu/Zn-based catalysts by nickel additive in methanol decomposition. Appl. Catal. A Gen. 225, 77–86 (2002)

    Google Scholar 

  8. Tsoncheva, T.; Genova, I.; Stoyanova, M.; Pohl, M.M.; Nickolov, R.; Dimitrov, M.; Sarcadi-Priboczki, E.; Mihaylov, M.; Kovacheva, D.; Hadjiivanov, K.: Effect of mesoporous silica topology on the formation of active sites in copper supported catalysts for methanol decomposition. Appl. Catal. B Environ. 147, 684–697 (2014)

    Google Scholar 

  9. Peppley, B.; Amphlett, J.: Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl. Catal. A Gen. 179, 21–29 (1999)

    Google Scholar 

  10. Pojanavaraphan, C.; Luengnaruemitchai, A.; Gulari, E.: Effect of steam content and O2 pre-treatment on the catalytic activities of Au/CeO2–Fe2O3 catalysts for steam reforming of methanol. J. Ind. Eng. Chem. 20, 961–971 (2014)

    Google Scholar 

  11. Chang, F.W.; Yu, H.Y.; Roselin, L.S.; Yang, H.C.: Production of hydrogen via partial oxidation of methanol over Au/TiO2 catalysts. Appl. Catal. A Gen. 290, 138–147 (2005)

    Google Scholar 

  12. Huang, Y.J.; Ng, K.L.; Huang, H.Y.: The OSRM reaction over gold promoted copper zinc catalyst. J. Chin. Ins. Eng. 34, 11–17 (2011)

    Google Scholar 

  13. Turco, M.; Bagnasco, G.; Costantino, U.: Production of hydrogen from oxidative steam reforming of methanol: II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts. J. Catal. 228, 56–65 (2004)

    Google Scholar 

  14. Ying, L.A.; Liu, J.; Mo, L.; Lou, H.; Zheng, X.: Hydrogen production by oxidative steam reforming of methanol over Ce1−xZnxOy catalysts prepared by combustion method. Int. J. Hydrogen Energy 37, 1002–1006 (2012)

    Google Scholar 

  15. Hereijgers, B.; Weckhuysen, B.: Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides. ChemSusChem 2, 743–748 (2009)

    Google Scholar 

  16. Huang, Y.J.; Ng, K.L.; Huang, H.Y.: The effect of gold on the copper–zinc oxides catalyst during the partial oxidation of methanol reaction. Int. J. Hydrogen Energy 36, 15203–15211 (2011)

    Google Scholar 

  17. Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M.J.; Dalmon, B.: Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3. J. Catal. 144, 175–192 (1993)

    Google Scholar 

  18. Puigdollers, A.R.; Schlexer, P.; Tosoni, S.; Pacchioni, G.: Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 7, 6493–6513 (2017)

    Google Scholar 

  19. Srinivas, D.; Satyanarayana, C.V.V.; Potdar, H.S.; Ratnasamy, P.: Structural studies on NiO–CeO2–ZrO2 catalysts for steam reforming of ethanol. Appl. Catal. A Gen. 246, 323–334 (2003)

    Google Scholar 

  20. Pojanavaraphan, C.; Luengnaruemitchai, A.; Gulari, E.: Effect of catalyst preparation on Au/Ce1−xZrxO2 and Au–Cu/Ce1−xZrxO2 for steam reforming of methanol. Int. J. Hydrogen Energy 38, 1348–1362 (2013)

    Google Scholar 

  21. Srisiriwat, N.; Therdthianwong, S.; Therdthianwong, A.: Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2–ZrO2. Int. J. Hydrogen Energy 34, 2224–2234 (2009)

    Google Scholar 

  22. Inokawa, H.; Zaman, S.F.; Daous, M.A.; Al-Zahrani, A.A.; Petrov, L.: Vanadium oxide catalyst supported on CeO2–ZrO2 for formaldehyde production via partial oxidation of methanol. US Patent US 10207253 (2019)

  23. Inokawa, H.; Zaman, S.F.; Driss, H.; Daous, M.A.; Al-Zahrani, A.A.; Miyaoka, H.; Ichikawa, T.; Kojima, Y.; Petrov, L.: Formaldehyde production via partial oxidation of methanol over oxides of Cr, Mo and W supported on ceria–zirconia. IOP Conf. Ser. Mater. Sci. Eng. 458, 012018 (2018)

    Google Scholar 

  24. Inokawa, H.; Zaman, S.F.; Daous, M.A.; Al-Zahrani, A.A.; Petrov, L.: Vanadium oxide catalyst supported on CeO2–ZrO2 for dimethyl ether production via oxidative dehydration of methanol. US Patent US 10124320 B1 (2018)

  25. Inokawa, H.; Zaman, S.F.; Daous, M.A.; Al-Zahrani, A.A.; Petrov, L.: Mn/CeO2 catalyst for dimethyl ether production via oxidative dehydration of methanol. US Patent US2 018/0273456 A1 (2018)

  26. Zaman, S.F.; Daous, M.A.; Alzahrani, A.A.; Petrov, L.A.; Bake, A.; Touitou, J.; Alhamed, Y.: Zn–CeO2–ZrO2 catalyst for hydrogen production via methanol partial oxidation. US Patent US2018/0185823A1 (2018)

  27. Pojanavaraphan, C.; Luengnaruemitchai, A.; Gulari, E.: Catalytic activity of Au–Cu/CeO2–ZrO2 catalysts in steam reforming of methanol. Appl. Catal. A Gen. 456, 135–143 (2013)

    Google Scholar 

  28. Aibibula, B.; Zaman, S.F.; Alhamed, Y.A.; Al-Zahrani, A.A.; Daous, M.A.; Rather, S.; Driss, H.; Petrov, L.A.: Hydrogen production by partial oxidation of methanol over Au/CeO2–ZrO2 and Au/CeO2–ZrO2–TiO2 Catalysts. RSC Adv. 6, 22555–22562 (2016)

    Google Scholar 

  29. Yang, W.; Li, D.; Xu, D.; Wang, X.: Effect of CeO2 preparation method and Cu loading on CuO/CeO2 catalysts for methane combustion. J. Nat. Gas Chem. 18, 458–466 (2009)

    Google Scholar 

  30. Dobrosz Gomez, I.; Gomez Garcia, M.A.; Rynkowski, J.M.: CO oxidation over Au/CeO2–ZrO2 catalysts: the effect of the support composition of the Au support interaction. Kinet. Catal. 51, 823–827 (2010)

    Google Scholar 

  31. Zimmer, P.; Tschope, A.; Birringer, R.: Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst. J. Catal. 205, 339–345 (2002)

    Google Scholar 

  32. Ratnasamy, P.; Srinivas, D.; Satyanarayana, C.V.V.; Manikandan, P.; Senthil, K.R.S.; Sachin, M.; Shetti, V.N.: Influence of the support on the preferential oxidation of CO in hydrogen-rich steam reformates over the CuO–CeO2–ZrO2 system. J. Catal. 221, 455–465 (2004)

    Google Scholar 

  33. Fornasiero, P.; Kašpar, J.; Graziani, M.: On the rate determining step in the reduction of CeO2–ZrO2 mixed oxides. Appl. Catal. B Environ. 22, L11–L14 (1999)

    Google Scholar 

  34. Nedyalkova, R.; Niznansky, D.; Roger, A.: Iron–ceria–zirconia fluorite catalysts for methane selective oxidation to formaldehyde. Catal. Commun. 10, 1875–1880 (2009)

    Google Scholar 

  35. Davidson, S.; Sun, J.; Wang, Y.: Ethanol steam reforming on Co/CeO2: the effect of ZnO promoter. Top. Catal. 56, 1651–1659 (2013)

    Google Scholar 

  36. Ehrich, H.; Kraleva, E.: AlZn based Co and Ni catalysts for the partial oxidation of bioethanol—influence of different synthesis procedures. Cent. Eur. J. Chem. 12, 1285–1293 (2014)

    Google Scholar 

  37. Biswas, P.; Kunzru, D.: Steam reforming of ethanol on Ni–CeO2–ZrO2 catalysts: effect of doping with copper, cobalt and calcium. Catal. Lett. 118, 36–49 (2007)

    Google Scholar 

  38. Jeong, D.W.; Jang, W.J.; Na, H.S.; Shim, J.O.; Jha, A.; Roh, H.S.: Comparative study on cubic and tetragonal Cu–CeO2–ZrO2 catalysts for water gas shift reaction. J. Ind. Eng. Chem. 27, 35–39 (2015)

    Google Scholar 

  39. Biesinger, M.C.; Paynec, B.P.; Grosvenor, A.P.; Leo, W.M.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)

    Google Scholar 

  40. Ernst, B.; Hilaire, L.; Kiennemann, A.: Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer–Tropsch catalyst. Catal. Today 50, 413–427 (1999)

    Google Scholar 

  41. Hagelin-Weaver, H.A.E.; Hoflund, G.B.; Minahan, D.M.; Salaita, G.N.: Electron energy loss spectroscopic investigation of Co metal, CoO, and Co3O4 before and after Ar+ bombardment. Appl. Surf. Sci. 235, 420–448 (2004)

    Google Scholar 

  42. Singha, R.K.; Shukla, A.; Adak, S.; Pendem, C.; Saran, S.; Bal, R.: Partial oxidation of methane to synthesis gas over Ni-supported ceria catalyst. Ind. J. Chem. 53A, 467–471 (2014)

    Google Scholar 

  43. Zhu, P.; Li, J.; Huang, Q.; Yan, S.; Liu, M.; Zhou, R.: High performance CuO–CeO2 catalysts for selective oxidation of CO in excess hydrogen: effect of hydrothermal preparation conditions. J. Nat. Gas Chem. 18, 1–8 (2009)

    Google Scholar 

  44. Zhang, D.; Qian, Y.; Shi, L.; Mai, H.; Gao, R.; Zhang, J.; Yu, W.; Cao, W.: Cu-doped CeO2 spheres: synthesis, characterization, and catalytic activity. Catal. Commun. 26, 164–168 (2012)

    Google Scholar 

  45. Chen, J.T.; Wang, J.; Zhang, F.; Zhang, G.A.; Wua, Z.G.; Yana, P.X.: The effect of La doping concentration on the properties of zinc oxide films prepared by the sol–gel method. J. Cryst. Growth 310, 2627–2632 (2008)

    Google Scholar 

  46. Zanella, R.: Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J. Catal. 222, 357–367 (2004)

    Google Scholar 

  47. Malik, A.S.; Zaman, S.F.; Al-Zahrani, A.A.; Daous, M.A.; Driss, H.; Petrov, L.A.: Selective hydrogenation of CO2 to CH3OH and in-depth DRIFT analysis for PdZn/ZrO2 and CaPdZn/ZrO2 catalysts. Catal. Today (2019). https://doi.org/10.1016/J.CATTOD.2019.05.040

    Article  Google Scholar 

  48. Ojelade, O.A.; Zaman, S.F.; Daous, M.A.; Al-Zahrani, A.A.; Malik, A.S.; Driss, H.; Shterk, G.; Gascon, J.: Optimizing Pd:Zn molar ratio in PdZn/CeO2 for CO2 hydrogenation to methanol. Appl. Catal. A Gen. (2019). https://doi.org/10.1016/j.apcata.2019.117185

    Article  Google Scholar 

  49. Malik, A.S.; Zaman, S.F.; Al-Zahrani, A.A.; Daous, M.A.; Driss, H.; Petrov, L.A.: Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation. Appl. Catal. A Gen. 560, 42–53 (2018)

    Google Scholar 

  50. Ojelade, O.A.; Zaman, S.F.: CO2 hydrogenation to methanol over PdZn/CeO2 catalyst. C. R. Acad. Bulg. Sci. 72(6), 742–749 (2019)

    Google Scholar 

  51. Velu, S.; Suzuki, K.; Osaki, T.: A comparative study of reactions of methanol over catalysts derived from NiAl and CoAl-layered double hydroxides and their Sn-containing analogues. Catal. Lett. 69, 43–50 (2000)

    Google Scholar 

  52. Chang, F.W.; Lai, S.C.; Roseline, L.S.: Hydrogen production by partial oxidation of methanol over ZnO promoted Au/Al2O3 catalyst. J. Mol. Catal. A Chem. 282, 129–135 (2008)

    Google Scholar 

  53. Reina, T.R.; Ivanova, S.; Centeno, M.A.; Odriozola, J.A.: Boosting the activity of a Au/CeO2/Al2O3 catalyst for the WGS reaction. Catal. Today 253, 149–154 (2015)

    Google Scholar 

  54. Laguna, O.H.; Centeno, M.A.; Romero-Sarria, F.; Odriozola, J.A.: Oxidation of CO over gold supported on Zn-modified ceria catalysts. Catal. Today 172, 118–123 (2011)

    Google Scholar 

  55. Hu, J.; Guo, W.; Liu, Z.H.; Lu, X.; Zhu, H.; Shi, F.; Yan, J.; Jiang, R.: Unraveling the mechanism of the Zn-improved catalytic activity of Pd-based catalysts for water-gas shift reaction. J. Phys. Chem. C 120(36), 20181–20191 (2016)

    Google Scholar 

  56. Chang, F.W.; Roselin, L.S.; Ou, T.C.: Hydrogen production by partial oxidation of methanol over bimetallic Au–Ru/Fe2O3 catalysts. Appl. Catal. A Gen. 334, 147–155 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. 135-773-D1435. The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharif F. Zaman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, S.F., Al-Zahrani, A. & Bake, A. Partial Oxidation of Methanol (POM) over Transition Metal-Promoted Nanostructured Gold Catalysts Supported on CeO2–ZrO2. Arab J Sci Eng 46, 6531–6542 (2021). https://doi.org/10.1007/s13369-020-05137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05137-7

Keywords

Navigation