Skip to main content
Log in

Accuracy Assessment of DEMs Derived from Multiple SAR Data Using the InSAR Technique

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, digital elevation models (DEMs) derived from AlosPalsar data (Japanese Space Agency—JAXA), Sentinel-1A data, and Envisat ASAR data (European Space Agency—ESA) were compared by using a global navigation satellite system (GNSS). In addition, AW3D30, SRTM, and ASTER GDEM (open-access DEMs) data were also included in the accuracy evaluation. The DEM accuracies were investigated in three different terrain types, namely a plain area, mountainous area and agricultural area, and compared at elevation values on a pixel-based. The accuracy obtained from the ALOS PALSAR satellite data was found to be more reliable for all three terrain types. The standard deviation and root mean square values were calculated and compared to each other. The results of the accuracy assessments showed that the best result for the plain area was obtained with the Sentinel-1A and SRTM data, for the mountainous area was obtained with the SRTM data and for agricultural area was obtained with the ALOS PALSAR and SRTM data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Makineci, H.B.; Karabörk, H.: Evaluation digital elevation model generated by synthetic aperture radar data. Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. 41 (2016)

  2. Geymen, A.: Digital elevation model (DEM) generation using the SAR interferometry technique. Arab. J. Geosci. 7(2), 827–837 (2014)

    Article  Google Scholar 

  3. Soycan, M.; Tunalıoğlu, N.; Öcalan, T.; Soycan, A.; Gümüş, K.: Three dimensional modeling of a forested area using an airborne light detection and ranging method. Arab. J. Sci. Eng. 36(4), 581–595 (2011)

    Article  Google Scholar 

  4. Fernández-Landa, A.; Fernández-Moya, J.; Tomé, J.L.; Algeet-Abarquero, N.; Guillén-Climent, M.L.; Vallejo, R.; et al.: High resolution forest inventory of pure and mixed stands at regional level combining National Forest Inventory field plots, Landsat, and low density lidar. Int. J. Remote Sens. 39, 1–15 (2018)

    Article  Google Scholar 

  5. Eldhuset, K.; Andersen, P.H.; Hauge, S.; Isaksson, E.; Weydahl, D.J.: ERS tandem InSAR processing for DEM generation, glacier motion estimation and coherence analysis on Svalbard. Int. J. Remote Sens. 24(7), 1415–1437 (2003)

    Article  Google Scholar 

  6. Hong, D.B.; Yang, C.S.: Automatic discrimination approach of sea ice in the Arctic Ocean using Sentinel-1 Extra Wide Swath dual-polarized SAR data. Int. J. Remote Sens. 39, 1–15 (2018)

    Article  Google Scholar 

  7. Wecklich, C.; Martone, M.; Rizzoli, P.; Bueso-Bello, J.L.; Gonzalez, C.; Krieger, G.: Production of a global forest/non-forest map utilizing TanDEM-X interferometric SAR data. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 751–754. IEEE (2017)

  8. Abdikan, S.: Exploring image fusion of ALOS/PALSAR data and LANDSAT data to differentiate forest area. Geocarto Int. 33(1), 21–37 (2018)

    Article  Google Scholar 

  9. Son, N.T.; Chen, C.F.; Chen, C.R.; Minh, V.Q.: Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines. Geocarto Int. 33(6), 587–601 (2018)

    Google Scholar 

  10. Raucoules, D.; Le Cozannet, G.; de Michele, M.; Capo, S.: Observing water-level variations from space-borne high-resolution synthetic aperture radar (SAR) image correlation. Geocarto Int. 33(9), 977–987 (2018)

    Article  Google Scholar 

  11. Osmanoğlu, B.; Dixon, T.H.; Wdowinski, S.; Cabral-Cano, E.; Jiang, Y.: Mexico City subsidence observed with persistent scatterer InSAR. Int. J. Appl. Earth Obs. Geoinf. 13(1), 1–12 (2011)

    Article  Google Scholar 

  12. Abd El Aal, A.K.; Kamel, M.; Alyami, S.H.: Environmental analysis of land use and land change of Najran city: GIS and remote sensing. Arab. J. Sci. Eng. 45, 1–14 (2020)

    Article  Google Scholar 

  13. Weydahl, D.J.; Sagstuen, J.; Dick, Ø.B.; Rønning, H.: SRTM DEM accuracy assessment over vegetated areas in Norway. Int. J. Remote Sens. 28(16), 3513–3527 (2007)

    Article  Google Scholar 

  14. Yang, L.; Meng, X.; Zhang, X.: SRTM DEM and its application advances. Int. J. Remote Sens. 32(14), 3875–3896 (2011)

    Article  Google Scholar 

  15. Chen, X.; Cen, M.; Guo, H.; Zhang, T.; Zhao, C.; Zhang, B.: Chinese satellite photogrammetry without ground control points based on a public DEM using an efficient and robust DEM matching method. Int. J. Remote Sens. 39(3), 704–726 (2018)

    Article  Google Scholar 

  16. Habib, A.; Akdim, N.; Labbassi, K.; Khoshelham, K.; Menenti, M.: Extraction and accuracy assessment of high-resolution DEM and derived orthoimages from ALOS-PRISM data over Sahel-Doukkala (Morocco). Earth Sci. Inf. 10(2), 197–217 (2017)

    Article  Google Scholar 

  17. Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y.: Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. Int. J. Remote Sens. 39(4), 1042–1067 (2018)

    Article  Google Scholar 

  18. Abdikan, S.; Arıkan, M.; Sanli, F.B.; Cakir, Z.: Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environ. Earth Sci. 71(9), 4081–4089 (2014)

    Article  Google Scholar 

  19. Lei, Y.; Siqueira, P.; Treuhaft, R.: A physical scattering model of repeat-pass InSAR correlation for vegetation. Waves Random Complex Media 27(1), 129–152 (2017)

    Article  MathSciNet  Google Scholar 

  20. Pepe, A.; Calò, F.: A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of earth’s Surface displacements. Appl. Sci. 7(12), 1264 (2017)

    Article  Google Scholar 

  21. Koppel, K.; Zalite, K.; Voormansik, K.; Jagdhuber, T.: Sensitivity of Sentinel-1 backscatter to characteristics of buildings. Int. J. Remote Sens. 38(22), 6298–6318 (2017)

    Article  Google Scholar 

  22. Arras, C.; Melis, M.T.; Afrasinei, G.M.; Buttau, C.; Carletti, A.; Ghiglieri, G.: Evaluation and validation of SRTMGL1 and ASTER GDEM2 for two Maghreb regions (Biskra, Algeria and Medenine, Tunisia). In: Water and Land Security in Drylands, pp. 291–301. Springer, Cham (2017)

  23. Su, Z.; et al.: Coseismic displacement of the 5 April 2017 Mashhad earthquake (Mw 61) in NE Iran through Sentinel-1A TOPS data: new implications for the strain partitioning in the southern Binalud Mountains. J. Asian Earth Sci. 169, 244–256 (2019)

    Article  Google Scholar 

  24. Caló, F.; Notti, D.; Galve, J.P.; Abdikan, S.; Görüm, T.; Pepe, A.; Balik Şanli, F.: Dinsar-based detection of land subsidence and correlation with groundwater depletion in Konya plain, Turkey. Remote Sens. 9(1), 83 (2017)

    Article  Google Scholar 

  25. Orhan, O.; Yakar, M.; Kirtiloğlu, O.S.: A web based service application for visual sinkhole inventory information system; case study of Konya Closed Basin. Selcuk Univ. J. Eng. Sci. Technol. 5(1), 72–82 (2017)

    Google Scholar 

  26. Tamura, Y.; Matsui, M.; Pagnini, L.C.; Ishibashi, R.; Yoshida, A.: Measurement of wind-induced response of buildings using RTK-GPS. J. Wind Eng. Ind. Aerodyn. 90(12–15), 1783–1793 (2002)

    Article  Google Scholar 

  27. Bouaraba, A.; Belhadj-Aissa, A.; Closson, D.: Man-made change detection using high-resolution Cosmo-Skymed SAR interferometry. Arab. J. Sci. Eng. 41(1), 201–208 (2016)

    Article  Google Scholar 

  28. Kampes, B.M.: Radar interferometry. Springer, Berlin (2006)

    Google Scholar 

  29. Zhou, C.; Zhang, G.; Yang, Z.; Ao, M.; Liu, Z.; Zhu, J.: An adaptive terrain-dependent method for SRTM DEM correction over mountainous areas. IEEE Access 8, 130878–130887 (2020)

    Article  Google Scholar 

  30. Xue, S.; Dang, Y.; Liu, J.; Mi, J.; Dong, C.; Cheng, Y.; et al.: Surface area calculation for DEM-based terrain model. Surv. Rev. 50(358), 8–15 (2018)

    Article  Google Scholar 

  31. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; Seal, D.; Schaffer, S.; Shimada, J.; Umland, J.; Werner, M.; Oskin, M.; Burbank, D.; Alsdorf, D.: The shuttle radar topography mission. Rev. Geophys. 45(2) (2007)

  32. Canadian Agricultural Services Coordinating Committee: Soil Classification Working Group, National Research Council Canada, Canada. Agriculture, and Agri-Food Canada. Research Branch. The Canadian system of soil classification (No. 1646). NRC Research Press, Ottawa (1998)

  33. Franceschetti, G.; Lanari, R.: Synthetic aperture radar processing. CRC Press, Boca raton (2018)

    Book  Google Scholar 

  34. Chen, C.W.; Zebker, A.H.: SNAPHU: statisticalcost, network-flow algorithm for phase unwrapping. Retrieved 27 Apr 2016 (2003)

  35. Eldhuset, K.: Combination of stereo SAR and InSAR for DEM generation using TanDEM-X spotlight data. Int. J. Remote Sens. 38(15), 4362–4378 (2017)

    Article  Google Scholar 

  36. Veci, L.; Lu, J.; Prats-Iraola, P.; Scheiber, R.; Collard, F.; Fomferra, N.; Engdahl, M: The Sentinel-1 toolbox. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1–3 (2014)

  37. Veci, L.: Interferometry tutorial. Array systems. Available online: http://sentinel1.s3.amazonaws.com/docs/S1TBX%20Stripmap%20Interferometry%20with%20Sentinel-1%20Tutorial.pdf. Accessed on 12 Aug 2017 (2015)

  38. Grohmann, C.H.: Evaluation of TanDEM-X DEMs on selected Brazilian sites: comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sens. Environ. 212, 121–133 (2018)

    Article  Google Scholar 

  39. Sefercik, U.G.; Buyuksalih, G.; Jacobsen, K.; Bayburt, S.: 2019, DSM quality of Korean satellite KOMPSAT-3 in comparison to AW3D30 and Sentinel-1A in respect of airborne laser scanning. KSCE J. Civil Eng. 23(7), 3162–3173 (2019)

    Article  Google Scholar 

  40. Alganci, U.; Besol, B.; Sertel, E.: Accuracy assessment of different digital surface models. Int. J. Geo-inf. 7, 114 (2018)

    Article  Google Scholar 

  41. Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.; Curtis, B.; Haase, J.; Abrams, M.; Carabajal, C.: ASTER global digital elevation model version 2-summary of validation results. http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/SummaryGDEM2validationreportfinal.pdf (28 Dec 2015) (2011)

  42. Suwandana, E.; Kawamura, K.; Sakuno, Y.; Kustiyanto, E.; Raharjo, B.: Evaluation of ASTER GDEM2 in comparison with GDEM1, SRTM DEM and topographic-map-derived DEM using inundation area analysis and RTK-dGPS data. Remote Sens. 4, 2419–2431 (2014)

    Article  Google Scholar 

  43. Athmania, D.; Achour, H.: External validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI-SRTM v.41 free access digital elevation models (DEMs) in Tunisia and Algeria. Remote Sens. 6(5), 4600–4620 (2014)

    Article  Google Scholar 

  44. Santillana, J.R.; Makinano-Santillan, M.: Vertical Accuracy Assessment Of 30-M Resolution ALOS, ASTER, and SRTM Global Dems Over Northeastern Mindanao, Philippines, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic (2016)

  45. Imamoglu, M.; Kahraman, F.; Cakir, Z.; Sanli, F.B.: Ground deformation analysis of Bolvadin (W. Turkey) by means of multi-temporal InSAR techniques and sentinel-1 data. Remote Sens. 11(9), 1069 (2019)

    Article  Google Scholar 

  46. Nasirzadehdizaji, R.; Balik Sanli, F.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M.: Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage. Appl. Sci. 9(4), 655 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific Research Project Fund of Selcuk University under the project number 16401088. This research incorporates a part Hasan Bilgehan MAKİNECİ's master thesis titled “Evaluation of quality of digital elevation model obtained from sentinel 1A radar satellite images”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Bilgehan Makineci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabörk, H., Makineci, H.B., Orhan, O. et al. Accuracy Assessment of DEMs Derived from Multiple SAR Data Using the InSAR Technique. Arab J Sci Eng 46, 5755–5765 (2021). https://doi.org/10.1007/s13369-020-05128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05128-8

Keywords

Navigation