Skip to main content

Optimal Design of Transmission Shafts Using a Vortex Search Algorithm

Abstract

This paper analyzes the problem of optimally sizing a transmission shaft via the vortex search algorithm (VSA) optimizer. The objective function was to minimize the shaft weight through an adequate selection of the diameters of each section of the device, and the constraints were the physical conditions that should be met to design safe, fatigue-proof shafts. The solution and the mathematical model were validated using Autodesk Inventor. In addition, the performance of the VSA was compared to that of the continuous genetic algorithm . The numerical results show that the programmed model has the physical and methodological characteristics needed to produce a better output than conventional design techniques. Therefore, this model can be a powerful tool to solve nonlinear non-convex optimization problems such as the case investigated here.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Bruno, L.: Design and analysis of composite drive shaft using ANSYS and genetic algorithm, vol 53 (2019)

  2. 2.

    Kim, H.S.; Lee, D.G.: Optimal design of the press fit joint for a hybrid aluminum/composite drive shaft. Compos. Struct. 70, 33 (2005)

    Article  Google Scholar 

  3. 3.

    Rodriguez-Cabal, M.A.; Marín, J.A.; Grisales-Noreña, L.F., Montoya, O.D.; Andres, S., Jorge; Rio, D.: Optimization of a drive shaft using PSO algorithm. WSEAS Trans. Appl. Theor. Mech. 13, 130–139 (2018)

  4. 4.

    Reddy, P.S.K.; Nagaraju, Ch.: Weight optimization and finite element analysis of composite automotive drive shaft for maximum stiffness. Mater. Today Proc. 4, 2390–2396 (2017)

  5. 5.

    Melo, D.; Vinícius, V.; Carosio, G.L.C.: Investigating multi-view differential evolution for solving constrained engineering design problems. Expert Syst. Appl. 40(9), 3370–3377 (2013)

    Article  Google Scholar 

  6. 6.

    Kashan, A.H.: An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA). CAD Comput. Aided Des. 43(12), 1769–1792 (2011)

    Article  Google Scholar 

  7. 7.

    Alguliyev, R.M.; Aliguliyev, R.M.; Abdullayeva, F.J.: PSO+K-means algorithm for anomaly detection in big data. Stat. Optim. Inf. Comput. 7(2), 348–359 (2019)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Mendi, F.; Bakal, T.; Boran, K.; Boran, F.E.: Optimization of module, shaft diameter and rolling bearing for spur gear through genetic algorithm. Expert Syst. Appl. 37(12), 8058–8064 (2010)

    Article  Google Scholar 

  9. 9.

    Choi, B.G.; Yang, B.S.: Optimum shape design of rotor shafts using genetic algorithm. J. Vib. Control 6(2), 207–222 (2000)

    Article  Google Scholar 

  10. 10.

    Özk, A.; Babalk, A.: A novel metaheuristic for multi-objective optimization problems: the multi-objective vortex search algorithm. Inf. Sci. 402, 124–148 (2017)

    Article  Google Scholar 

  11. 11.

    Doan, B.; Ölmez, T.: A new metaheuristic for numerical function optimization: vortex Search algorithm. Inf. Sci. 293, 125–145 (2015)

    Article  Google Scholar 

  12. 12.

    Montoya, O.D.; Gil-Gonzalez, W.; Grisales-Norena, L.F.: Vortex search algorithm for optimal power flow analysis in DC resistive networks with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 7747(c), 1–1 (2019)

    Google Scholar 

  13. 13.

    Nadeem, S.K.S.; Giridhara, G., Rangavittal, H.K., : A review on the design and analysis of composite drive shaft. Mater Today Proc. 5, 2738–2741 (2018)

  14. 14.

    Rodriguez-Cabal, M.A.; Grisales-Nora, L.F.; Marín, J.A.; Montoya, O.D.: Optimal design of transmission shafts: a continuous genetic algorithm approach. Stat. Optim. Inf. Comput. 7(4), 802–815 (2019)

    Article  Google Scholar 

  15. 15.

    Mott, R.L.: Machine elements in mechanical design, p. 945 (1985).

  16. 16.

    Alejandra, M.G.; Alberto, D.: Optimización de la geometría de un eje aplicando algoritmos geneticos Optimising a shaft s geometry by applying genetic algorithms. Ingeniería e Investigación 25(2), 15–23 (2005)

  17. 17.

    Norton, R.L.: Diseño de máquinas, vol. 1. Prentice Hall, London (1999)

    Google Scholar 

  18. 18.

    MatWeb. AISI Steel, cold drawn (2019)

  19. 19.

    Beer, F.P.; Johnstons, F.P.; Mazurek, E.; Eisenberg, R., David F., Beer, Elliot R.: Mecanica Vectorial Para Ingenieros. Mc Graw Hill 1, 654 (2010)

  20. 20.

    Comino, P.; Carigliano, S.: Free Beam Calculator (2013)

  21. 21.

    Doanahin, K.; Kekezolu, B.; Yumurtac, R.; Erdin, O.; Catalão, J.P.S.: Maximum permissible integration capacity of renewable dg units based on system loads. Energies 11, 1 (2018)

    Google Scholar 

  22. 22.

    Montoya, O.D.; Grisales-nore, L.F.: Optimal power dispatch of DGs in DC power grids : a hybrid Gauss-Seidel-Genetic-Algorithm methodology for solving the OPF problem. WSEAS Trans. Power Syst. 13, 335–346 (2018)

    Google Scholar 

  23. 23.

    Mastorakis, N.E.: Solving non-linear equations via genetic algorithms. Proc. Sixth WSEAS Int. Conf. Evol. Comput. 2005, 24–28 (2005)

    Google Scholar 

  24. 24.

    Giri, C.; Tipparthi, D.K.R.; Chattopadhyay, S.: A genetic algorithm based approach for system-on-chip test scheduling using dual speed TAM with power constraint. WSEAS Trans. Circuits Syst. 7(5), 416–427 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Instituto Tecnolgico Metropolitano de Medelln (Colombia), under the research groups of Advanced Computing and Digital Design (SeCADD) and mathematical modeling, programming, and optimization applied to engineering, which belongs to the research group of Advanced Materials and Energy (MATyER) and contributes to the development of the project entitled “H-Darrieus type hydraulic (hydrokinetic) turbine for picogeneration using parametric optimization.” It was also supported by Universidad Distrital Fransisco José de Caldas, Institución Universitaria Pascual Bravo, and Universidad Tecnológica de Bolívar.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Rodriguez-Cabal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Cabal, M.A., Betancur-Gómez, J.D., Grisales-Noreña, L.F. et al. Optimal Design of Transmission Shafts Using a Vortex Search Algorithm. Arab J Sci Eng 46, 3293–3300 (2021). https://doi.org/10.1007/s13369-020-05121-1

Download citation

Keywords

  • Mechanical analysis
  • Machine elements design
  • Weight shaft optimization
  • Vortex search algorithm
  • Continuous genetic algorithm
  • Nonlinear non-convex optimization