Skip to main content
Log in

Numerical Simulations of Time-Dependent Micro-Rotation Blood Flow Induced by a Curved Moving Surface Through Conduction of Gold Particles with Non-uniform Heat Sink/Source

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Cancer remains one of the leading healthcare problems in the world, and efforts continue not only to discover new therapies but also to find better ways to deliver medicines. The need to transmit cytotoxic agents selectively to cancer cells, to improve safety and efficacy, has prompted the application of nanotechnology in medicine. The latest explorations have revealed that gold nanomaterials can rectify and defeat it since they have a large atomic quantity to generate heat and contribute to malignant tumor therapy. The purpose of the present study is to investigate the consequence of heat transport through micropolar blood flow which contains gold nanomaterials in a moving shrinking/stretching curved surface. The mathematical modeling of micropolar nanofluid containing gold blood nanomaterials (AuNPs) toward the curved shrinking/stretching surface is simplified by utilizing suitable transformation. Numerical dual solutions are regulated for the temperature distribution and velocity field by using the bvp4c technique in MATLAB. Impacts of pertinent constants on temperature distribution and velocity are examined. Consequently, findings indicate that gold nanomaterials are useful for drug movement and delivery mechanisms, as velocity boundary is controlled by suction and unsteady parameters. Gold nanomaterials also raise the temperature field, so that cancer cells can be destroyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Intensity of the magnetic field

\(B^{*} ,A^{*}\) :

Temperature- and space-dependent heat source/sink

c :

Constant rate

\(C_{F} {\text{Re}}_{s}^{0.5}\) :

Dimensionless friction factor

\(C_{m} {\text{Re}}_{s}\) :

Couple stress

\(F\) :

Dimensionless velocity

\(G\) :

Dimensionless micro-rotation

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j}\) :

Micro-inertia

\(K_{1}\) :

Micropolar or material parameter

\(M\) :

Magnetic parameter

\(M_{m}\) :

Wall couple stress

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{N}\) :

Micro-rotation velocity

\({\text{Nu}}_{s} {\text{Re}}_{s}^{ - 0.5}\) :

Local Nusselt number

\(n_{0}\) :

Constant

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}\) :

Pressure

\(\Pr\) :

Prandtl number

\(Q^{*}\) :

Non-uniform heat sink or source

\(q\) :

Radius of curvature

\(q_{w}\) :

Flux of heat

\(R_{1}\) :

Radius of a circle

\(R_{d}\) :

Radiation parameter

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{T}_{w}\) :

Temperature

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{T}_{\infty }\) :

Ambient temperature

\(U_{w} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{s} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{t} } \right)\) :

Stretching/shrinking velocity

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{V}_{w} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{t} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{s} } \right)\) :

Mass-flux velocity

\(\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{u}_{1} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{v}_{1} } \right)\) :

Velocity components

\(\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{r} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{s} } \right)\) :

Curvilinear coordinates

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{t}\) :

Time

\(\beta\) :

Unsteadiness parameter

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\rho }_{{{\text{nf}}}}\) :

Nanoliquid density

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\gamma }_{{{\text{nf}}}}\) :

Nanofluid spin gradient

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k}^{*}\) :

Mean proportion coefficient

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k}_{{{\text{nf}}}}\) :

Nanoliquid thermal conductivity

\(\kappa\) :

Vortex viscosity

\(\lambda\) :

Stretching/shrinking constant

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\mu }_{{{\text{nf}}}}\) :

Nanoliquid viscosity

\(\phi\) :

Nanoparticle volume fraction

\(\xi\) :

Unsteadiness constant

\(\theta\) :

Dimensionless temperature

\(\left( {c_{p} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\rho } } \right)_{{{\text{nf}}}}\) :

Heat capacitance

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\sigma }^{*}\) :

Stefan–Boltzmann constant

\(\sigma_{e}\) :

Electrical conductivity

\(\tau_{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{r} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{s} }}\) :

Wall friction

nf:

Nanofluid

\({\text{f}}\) :

Base fluid

′:

Derivative w.r.t \(\eta\)

References

  1. Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J.: Cancer statistics. CA Cancer J. Clin. 59(4), 225–249, 2009

    Google Scholar 

  2. Stewart, B.W.; Coates, A.S.: Cancer prevention: a global perspective. J. Clin. Oncol. 23(2), 392–403, 2005

    Google Scholar 

  3. Huang, X.; El-Sayed, M.A.: Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1(1), 13–28, 2010

    Google Scholar 

  4. Gautier, J.; Allard-Vannier, E.; Herve-Aubert, K.; Souce, M.; Chourpa, I.: Design strategies of hybrid metallic nanoparticles for theragnostic applications. Nanotechnology 24(43), 432002, 2013

    Google Scholar 

  5. Ferro-Flores, G.; de Murphy, C.A.; Melendez-Alafort, L.: Third generation radiopharmaceuticals for imaging and targeted therapy. Curr. Pharm. Anal. 2(4), 339–352, 2006

    Google Scholar 

  6. Hashimoto, S.; Werner, D.; Uwada, T.: Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C Photochem. Rev. 13(1), 28–54, 2012

    Google Scholar 

  7. Letfullin, R.R.; George, T.F.; Duree, G.C.; Bollinger, B.M.: Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches. Adv. Opt. Technol. 2008, 51718, 2008

    Google Scholar 

  8. Moores, A.; Goettmann, F.: The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J. Chem. 30(8), 1121–1132, 2006

    Google Scholar 

  9. Letfullin, R.R.; Iversen, C.B.; George, T.F.: Modeling nanophotothermal therapy: kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles. Nanomed. Nanotechnol. Biol. Med. 7(2), 137–145, 2011

    Google Scholar 

  10. Mendoza-Nava, H.; Ferro-Flores, G.; Ocampo-Garcia, B.; et al.: Laser heating of gold nanospheres functionalized with octreotide: in vitro effect on HeLa cell viability. Photomed. Laser Surg. 31(1), 17–22, 2013

    Google Scholar 

  11. Nedyalkov, N.N.; Imamova, S.E.; Atanasov, P.A.; et al.: Interaction of gold nanoparticles with nanosecond laser pulses: nanoparticle heating. Appl. Surf. Sci. 257(12), 5456–5459, 2011

    Google Scholar 

  12. Sanchez-Hernandez, L.; Ferro-Flores, G.; Jimenez-Mancilla, N.P.; et al.: Comparative effect between laser and radiofrequency heating of RGD-gold nanospheres on MCF7 cell viability. J. Nanosci. Nanotechnol. 15(12), 9840–9848, 2015

    Google Scholar 

  13. Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A.: Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23(3), 217–228, 2008

    Google Scholar 

  14. Wang, M.X.; Brodin, J.D.; Millan, J.A.; et al.: Altering DNA-programmable colloidal crystallization paths by modulating particle repulsion. Nano Lett. 17(8), 5126–5132, 2017

    Google Scholar 

  15. Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110(14), 7238–7248, 2006

    Google Scholar 

  16. Ferro-Flores, G.; Ocampo-Garcia, B.E.; Santos-Cuevas, C.L.; Morales-Avila, E.; Azorin-Vega, E.: Multifunctional radio labeled nanoparticles for targeted therapy. Curr. Med. Chem. 21(1), 124–138, 2014

    Google Scholar 

  17. Cantelli, A.; Battistelli, G.; Guidetti, G.; Manzi, J.; Di Giosia, M.; Montalti, M.: Luminescent gold nanoclusters as biocompatible probes for optical imaging and theranostics. Dyes Pigments 135, 64–79, 2016

    Google Scholar 

  18. Eid, M.R.; Alsaedi, A.; Muhammad, T.; Hayat, T.: Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation. Results Phys. 7, 4388–4393, 2017

    Google Scholar 

  19. Reddy, S.R.R.; Reddy, P.B.A.; Suneetha, S.: Magnetohydro dynamic flow of blood in a permeable inclined stretching surface with viscous dissipation, non-uniform heat source/sink and chemical reaction. Front. Heat Mass Transf. 10, 22, 2018

    Google Scholar 

  20. Gholinia, M.; Armin, M.; Ranjbar, A.A.; Ganji, D.D.: Numerical thermal study on CNTs/ C2H6O2–H2O hybrid base nanofluid upon a porous stretching cylinder under impact of magnetic source. Case Stud. Therm. Eng. 14, 100490, 2019

    Google Scholar 

  21. Elelamy, A.F.; Elgazery, N.S.; Ellahi, R.: Blood flow of MHD non-Newtonian nanofluid with heat transfer and slip effects: application of bacterial growth in heart valve. Int. J. Numer. Methods Heat Fluid Flow, 2020. https://doi.org/10.1108/HFF-12-2019-0910.

    Article  Google Scholar 

  22. Alkasasbeh, H.T.; Swalmeh, M.Z.; Saeed, H.G.B.; Al Faqih, F.M.; Talafha, A.G.: Investigation on CNTs-water and human blood based Casson nanofluid flow over a stretching sheet under impact of magnetic field. Front. Heat Mass Transf. 14, 15, 2020

    Google Scholar 

  23. Lowe, G.D.; Rumley, A.: The relationship between blood viscosity and blood pressure in a random sample of the population aged 55 to 74 years. Eur. Heart J. 597(5–20), 14, 1993

    Google Scholar 

  24. Thurston, G.B.; Henderson, N.M.; Jeng, M.: Viscoelastic properties of blood on analoges. In: How, T.V. (ed.) Advances in hemodynamics and hemorheology. Jai Press Inc, Greenwich (2004)

    Google Scholar 

  25. Eringen, A.C.: Theory of micropolar fluids. J. Math. Anal. Appl. 16, 1–18, 1966

    MathSciNet  Google Scholar 

  26. Eringen, A.C.: Theory of thermomicro fluids. J. Math. Anal. Appl. 38, 480–496, 1972

    Google Scholar 

  27. Mohammeadein, A.A.; Gorla, R.S.R.: Effects of transverse magnetic field on mixed convection in a micropolar fluid on a horizontal plate with vectored mass transfer. Acta Mech. 118, 1–12, 1966

    Google Scholar 

  28. Peddieson, J.; McNitt, R.P.: Boundary-layer theory for a micropolar fluid. Recent Adv. Eng. Sci. 5, 405–426, 1970

    Google Scholar 

  29. Gupta, P.S.; Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction and blowing. Can. J. Chem. Eng. 55, 744–746, 1977

    Google Scholar 

  30. Chakrabarti, A.; Gupta, A.S.: Hydromagnetic flow and heat transfer over a stretching sheet. Q. Appl. Math. 37, 73–78, 1979

    MATH  Google Scholar 

  31. Anwar, M.I.; Shafie, S.; Hayat, T.; Shehzad, S.A.; Salleh, M.Z.: Numerical study for MHD stagnation-point flow of a micropolar nanofluid towards a stretching sheet. J. Braz. Soc. Mech. Sci. Eng. 39, 89–100, 2017

    Google Scholar 

  32. Alizadeh, M.; Dogonchi, A.S.; Ganji, D.D.: Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field. Case Stud. Therm. Eng. 12, 319–332, 2018

    Google Scholar 

  33. Zaib, A.; Khan, U.; Shah, Z.; Kumam, P.; Thounthong, P.: Optimization of entropy generation in flow of micropolar mixed convective magnetite (Fe3O4) ferroparticle over a vertical plate. Alex. Eng. J. 58, 1461–1470, 2019

    Google Scholar 

  34. Zaib, A.; Haq, R.U.; Sheikholeslami, M.; Khan, U.: Numerical analysis of effective Prandtl model on mixed convection flow of γAl2O3–H2O nanoliquids with micropolar liquid driven through wedge. Phys. Scr. 95(3), 035005, 2020

    Google Scholar 

  35. Sajid, M.; Ali, N.; Abbas, Z.; Javed, T.: Flow of a micropolar fluid over a curved stretching surface. J. Eng. Phys. Thermophys. 84(4), 798–804, 2011

    Google Scholar 

  36. Saleh, S.H.M.; Arifin, NMd.; Nazar, R.; Pop, I.: Unsteady micropolar fluid over a permeable curved stretching shrinking surface. Math. Problem Eng. 2017, 1–13, 2017

    MathSciNet  MATH  Google Scholar 

  37. Changdar, S.; De, S.: Analytical solution of mathematical model of magnetohydrodynamic blood nanofluid flowing through an inclined multiple stenosed artery. J. Nanofluids 6(6), 1198–1205, 2017

    Google Scholar 

  38. Afshari, A.; Akbari, M.; Toghraie, D.; Yazdi, M.E.: Experimental investigation of rheological behavior of the hybridnanofluid of MWCNT-alumina/water (80%)-ethylene-glycol (20%). J. Therm. Anal. Calorim. 132(2), 1001–1015, 2018

    Google Scholar 

  39. Mintsa, H.A., Nguyen, C.T., Roy, G.: New temperature dependent thermal conductivity data of water based nanofluids. In: Proceedings of the 5th IASME/WSEAS international conference on heat transfer, thermal engineering and environment, Athens, Greece, vol. 290, pp. 25–27 (2007)

  40. Makinde, O.D.; Animasaun, I.L.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743, 2016

    Google Scholar 

  41. Elgazery, N.S.: Nanofluids flow over a permeable unsteady stretching surface with non-uniform heat source/sink in the presence of inclined magnetic field. J. Egypt. Math. Soc. 27(9), 9, 2019

    MathSciNet  MATH  Google Scholar 

  42. Abbas, Z.; Naveed, M.; Sajid, M.: Heat transfer analysis for stretching flow over a curved surface with magnetic field. J. Eng. Thermophys. 22(4), 337–345, 2013

    Google Scholar 

  43. Saleh, S.H.M.; Md Arifin, N.; Nazar, R.; Pop, I.: Unsteady micropolar fluid over a permeable curved stretching shrinking surface. Math. Prob. Eng. 2017, 3085249, 2017

    MathSciNet  MATH  Google Scholar 

  44. Roşca, N.C.; Pop, I.: Unsteady boundary layer flow over a permeable curved stretching/shrinking surface. Eur. J. Mech. B Fluids 51, 61–67, 2015

    MathSciNet  MATH  Google Scholar 

  45. Chato, J.C.: Heat transfer to blood vessels. J. Biomech. Eng. 102, 110–118, 1980

    Google Scholar 

  46. Tzirtzilakis, E.E.; Kafoussias, N.G.: Biomagnetic fluid flow over a stretching sheet with nonlinear temperature dependent magnetization. J. Appl. Math. Phys. (ZAMP) 54, 551–565, 2003

    MATH  Google Scholar 

  47. Weidman, P.D.; Kubitschek, D.G.; Davis, A.M.J.: The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 44(11–12), 730–737, 2006

    MATH  Google Scholar 

  48. Wang, C.Y.: Stagnation flow towards a shrinking sheet. Int. J. Non-Linear Mech. 43(5), 377–382, 2008

    Google Scholar 

  49. Korika, O.K.; Animasaun, I.L.; Mahanthesh, B.; Saleem, S.; Sarojamma, G.; Sivaraj, R.: Heat transfer in the flow of blood-gold Carreau nanofluid induced by partial slip and buoyancy. Heat Transf. Asian Res. 47(6), 806–823, 2018

    Google Scholar 

Download references

Acknowledgment

The authors expressed sincere thanks to the reviewer for his valuable comments to improve the quality of the paper. Also, this research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zaib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, YM., Khan, U., Shafiq, A. et al. Numerical Simulations of Time-Dependent Micro-Rotation Blood Flow Induced by a Curved Moving Surface Through Conduction of Gold Particles with Non-uniform Heat Sink/Source. Arab J Sci Eng 46, 2413–2427 (2021). https://doi.org/10.1007/s13369-020-05106-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05106-0

Keywords

Navigation