Skip to main content
Log in

Study on the Effect of Guide Wall on the Transverse Velocity in the Bend

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

It is very important to understand the vertical transverse velocity distribution of the bend with the guide wall set on the axis to explain the improvement mechanism of the flow characteristics in the bend. Therefore, the effect of the guide wall on the transverse velocity under different parameters of the bend was presented. Considering the feature design of channel bend in real engineering project, axis, bottom slopes and discharges with two flow conditions were used as parameters. Analysis and observation showed the significant impact on the transverse velocity, the guide wall impact on both absolute value and the direction of the transverse velocity distribution and present certain laws. The absolute value is influenced by the change of velocity direction, while the direction is affected by the inlet flow condition. In contrast, the transverse velocity is effectively reduced by the installation of a guide wall, and the water depth differences are reduced as well. Therefore, the impact of the guide wall on the flow characteristic especially the transverse velocity was proved and these results are practically useful in channel bend design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

B :

The net width of the channel

i :

The bottom slope

R :

The axial radius of the bend

v :

The average velocity at entrance of the bend

Q :

The discharge

F :

Froude number

References

  1. Thomson, J.: On the origin of windings of rivers in Alluvial Plains, with remarks on the flow of water round bends in pipes. Proc. R. Soc. Lond. 25(171-178), 5–8 (1876)

    Google Scholar 

  2. Ippen, A.T.: Mechanics of supercritical flow. Trans. ASCE 116(1), 268–295 (1951)

    Google Scholar 

  3. Engelund, F.: Flow and bed topography in channel bends. J. Hydraul. Div. 100, 10963 (1974)

    Google Scholar 

  4. Hersberger, D.S.: Measurement of 3D flow field in a 90° bend with ultrasonic Doppler velocity profiler.. In: 2002. Papers of the Third International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering Co-organized by EPFL and PSI

  5. Bodnár, T.; Příhoda, J.: Numerical simulation of turbulent free-surface flow in curved channel. Flow Turbul. Combust. 76(4), 429–442 (2006). https://doi.org/10.1007/s10494-006-9030-x

    Article  MATH  Google Scholar 

  6. Abhari, M.N.; Ghodsian, M.; Vaghefi, M.; Panahpur, N.: Experimental and numerical simulation of flow in a 90 bend. Flow Meas. Instrum. 21(3), 292–298 (2010). https://doi.org/10.1016/j.flowmeasinst.2010.03.002

    Article  Google Scholar 

  7. Vaghefi, M.; Akbari, M.; Fiouz, A.R.: An experimental study of mean and turbulent flow in a 180 degree sharp open channel bend: secondary flow and bed shear stress. KSCE J. Civ. Eng. 20(4), 1582–1593 (2016). https://doi.org/10.1007/s12205-015-1560-0

    Article  Google Scholar 

  8. Vaghefi, M.; Mahmoodi, K.; Akbari, M.: Detection of outlier in 3D flow velocity collection in an open-channel bend using various data mining techniques. Iran. J. Sci. Technol. Trans. Civ. Eng. 43(2), 197–214 (2019). https://doi.org/10.1007/s40996-018-0131-2

    Article  Google Scholar 

  9. Chowdhury, R.R.; Biswas, S.; Alam, M.M.; Islam, A.S.: Turbulent flow analysis on bend and downstream of the bend for different curvature ratio. AIP Conf. Proc. doi 10(1063/1), 4958380 (2016)

    Google Scholar 

  10. Lv, S.; Gao, F.; Li, C.: Numerical simulation of 3D turbulent bend flow based on unstructured grids”. Int. J. Heat Technol. 36(3), 1037–1046 (2018). https://doi.org/10.18280/ijht.360334

    Article  Google Scholar 

  11. Gholami, A.; Bonakdari, H.; Zaji, A.H.; Akhtari, A.A.; Khodashenas, S.R.: Predicting the velocity field in a 90 open channel bend using a gene expression programming model. Flow Meas. Instrum. 46, 189–192 (2015). https://doi.org/10.1016/j.flowmeasinst.2015.10.006

    Article  Google Scholar 

  12. Gholami, A.; Bonakdari, H.; Zaji, A.H.; Ajeel Fenjan, S.; Akhtari, A.A.: Design of modified structure multi-layer perceptron networks based on decision trees for the prediction of flow parameters in 90 open-channel bends. Eng. Appl. Comput. Fluid Mech. 10(1), 194–209 (2016). https://doi.org/10.1080/19942060.2015.1128358

    Article  Google Scholar 

  13. Gholami, A.; Bonakdari, H.; Zaji, A.H.; Akhtari, A.A.: An efficient classified radial basis neural network for prediction of flow variables in sharp open-channel bends. Appl. Water Sci. 9(6), 145 (2019). https://doi.org/10.1007/s13201-019-1020-y

    Article  Google Scholar 

  14. Sinan, Q.S.; Mohammed, S.A.; Mohammad, R.R.A.K.A.; Tuan, M.Y.S.T.Y.; Nadhir, A.-A.; Zaher, M.Y.; Kwok, W.C.: Thin and sharp edges bodies-fluid interaction simulation using cut-cell immersed boundary method. Eng. Appl. Comput. Fluid Mech. 13(1), 860–877 (2019). https://doi.org/10.1080/19942060.2019.1652209

    Article  Google Scholar 

  15. Zhang, Q.H.; Liu, W.; Song, X.D.: Experimental study on setting of a guide wall on the curved section of the discharge trough of a spillway. Adv. Sci. Technol. Water Resour. 25(5), 52–54 (2005). https://doi.org/10.13476/j.cnki.nsbdqk.2016.06.025

    Article  Google Scholar 

  16. Zhang, Q.H.; Diao, Y.F.; Zhai, X.T.: Experimental study on improvement effect of guide wall. Water Sci. Technol. 73(3), 669–678 (2016). https://doi.org/10.2166/wst.2015.523

    Article  Google Scholar 

  17. Dey, L.; Barbhuiya, A.K.; Biswas, P.: Experimental study on bank erosion and protection using submerged vane placed at an optimum angle in a 180 laboratory channel bend. Geomorphology 283, 32–40 (2017). https://doi.org/10.1016/j.geomorph.2017.01.022

    Article  Google Scholar 

  18. Akhtari, A.A.; Seyedashraf, O.: Experimental and numerical investigation on Vanes’ effects on the flow characteristics in sharp 60 bends. KSCE J. Civ. Eng. 22(4), 1484–1495 (2018). https://doi.org/10.1007/s12205-017-1743-y

    Article  Google Scholar 

  19. Ghaneeizad, S.M.; Bahrami Jovein, E.; Abrishami, J.; Atkinson, J.F.: Redistribution of flow velocity in sharp bends using unsubmerged vanes. Int. J. River Basin Manag. (2018). https://doi.org/10.1080/15715124.2017.1411928

    Article  Google Scholar 

  20. Biswas, P.; Barbhuiya, A.K.: Effect of submerged vane on three dimensional flow dynamics and bed morphology in river bend. River Res. Appl. 35(3), 301–312 (2019). https://doi.org/10.1002/rra.3402

    Article  Google Scholar 

  21. Zhang, J.; Zhang, Q.H.; Wang, T.T.; Yang, J.M.; Li, X.M.: Research on the water level in the bended channel using a guide wall. Water Supply 19(8), 2494–2506 (2019). https://doi.org/10.2166/ws.2019.130

    Article  Google Scholar 

  22. SL 253-2018: Design specification for spillway. Ministry of Water Resources of the People’s Republic of China (2018)

Download references

Acknowledgements

This study was supported by State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin University), No. HESS-2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, T. & Zhang, Q. Study on the Effect of Guide Wall on the Transverse Velocity in the Bend. Arab J Sci Eng 46, 4687–4702 (2021). https://doi.org/10.1007/s13369-020-05101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05101-5

Keywords

Navigation