Skip to main content
Log in

Hazard Assessment of Rockfalls in Mountainous Urban Areas, Western Saudi Arabia

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Global warming and anticipated increase in rainfall frequency and magnitude are linked to enhanced rockfall activity worldwide. Arid environments, which currently receive limited amount of annual rainfall, will be particularly subject to frequent and unpredictable rockfall activity that can substantially jeopardize human lives and infrastructures. The main scope of this study is to assess the rockfall hazards in Thawr Mountain and Al-Azyziah district, western Saudi Arabia, using integrated field, geological, climatological and remote sensing datasets and modeling. Our findings indicated that: (1) there are general increasing trends of average annual precipitation and temperature for the period between 2009 and 2019, (2) inspection of multi-temporal satellite images between 2003 and 2017 showed rapid urban expansion, mainly through modification of hillslopes for urban development, which is expected to pose critical consequences on slope instability, (3) field investigations attributed rockfall activity to weathered exfoliated granodiorite hillslopes with abundant tension cracks and steep slopes, (4) slope degrees reached 79° with a general slope direction toward the urbanized areas, and (5) the rockfall motion was simulated along six profiles with dynamic urban areas along the termination of each profile, which showed that several blocks along the six profiles can reach the profile termination with medium intensity rockfall activity and kinetic energy ranges between 50 and 80 kj. The reported rockfall motion can threaten lives, houses and infrastructures. Therefore, protective precautions were suggested to prevent and mitigate the impact of rockfall activity along the studied profiles and similar areas in the mountainous western Arabian Peninsula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Selby, M.J.: Hillslope Materials and Processes. Oxford University Press, Oxford (1993)

    Google Scholar 

  2. Cruden, D.M.; Varnes, D.J.: Landslides: investigation and mitigation. Chapter 3—Landslide types and processes. Transportation research board special report, 247 (1996)

  3. Dorren, L.K.: A review of rockfall mechanics and modelling approaches. Prog. Phys. Geogr. 27(1), 69–87 (2003)

    Google Scholar 

  4. Vijayakumar, S.; Yacoub, T.; Curran, J.H.: On the effect of rock size and shape in rockfall analyses. In Proceedings of the US Rock Mechanics Symposium (ARMA) San Francisco CA, USA, (2011)

  5. Bull, W.B.; King, J.; Kong, F.; Moutoux, T.; Phillips, W.M.: Lichen dating of coseismic landslide hazards in alpine mountains. In Geomorphology and Natural Hazards, pp. 253–264 (1994)

  6. Frattini, P.; Crosta, G.; Carrara, A.; Agliardi, F.: Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94(3–4), 419–437 (2008)

    Google Scholar 

  7. Gigli, G.; Morelli, S.; Fornera, S.; Casagli, N.: Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios. Landslides 11(1), 1–14 (2014)

    Google Scholar 

  8. Volkwein, A.; Schellenberg, K.; Labiouse, V.; Agliardi, F.; Berger, F.; Bourrier, F.; Dorren, L.K.A.; Gerber, W.; Jaboyedo, M.: Rockfall characterisation and structural protection—a review. Nat. Hazards Earth Syst. Sci. 11(9), 2617–2651 (2011)

    Google Scholar 

  9. Agliardi, F.; Crosta, G.B.; Frattini, P.: Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat. Hazards Earth Syst. Sci. 9(4), 1059 (2009)

    Google Scholar 

  10. Pradhan, B.; Abokharima, M.H.; Jebur, M.N.; Tehrany, M.S.: Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat. Hazards 73(2), 1019–1042 (2014)

    Google Scholar 

  11. Crozier, M.J.: Deciphering the effect of climate change on landslide activity. A review. Geomorphology 124(3–4), 260–267 (2010)

    Google Scholar 

  12. Huggel, C.; Clague, J.J.; Korup, O.: Is climate change responsible for changing landslide activity in high mountains? Earth Surf. Proc. Land. 37(1), 77–91 (2012)

    Google Scholar 

  13. Cannon, S.H.; DeGraff, J.: The increasing wildfire and post-fire debris-flow threat in western USA, and implications for consequences of climate change. In Landslides–disaster risk reduction, pp. 177–190 (2009)

  14. Staley, D.M.; Tillery, A.C.; Kean, J.W.; McGuire, L.A.; Pauling, H.E.; Rengers, F.K.; Smith, J.B.: Estimating post-fire debris-flow hazards prior to wildfire using a statistical analysis of historical distributions of fire severity from remote sensing data. Int. J. Wildland Fire 27(9), 595–608 (2018)

    Google Scholar 

  15. Murphy, B.P.; Czuba, J.A.; Belmont, P.: Post-wildfire sediment cascades: a modeling framework linking debris flow generation and network-scale sediment routing. Earth Surf. Proc. Land. 44(11), 2126–2140 (2019)

    Google Scholar 

  16. Santi, P.M.; Hewitt, K.; VanDine, D.F.; Cruz, E.B.: Debris-flow impact, vulnerability, and response. Nat. Hazards 56(1), 371–402 (2011)

    Google Scholar 

  17. Elkadiri, R.; Sultan, M.; Youssef, A.M.; Elbayoumi, T.; Chase, R.; Bulkhi, A.B.; Al-Katheeri, M.M.: A remote sensing-based approach for debris-flow susceptibility assessment using artificial neural networks and logistic regression modeling. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 7(12), 4818–4835 (2014)

    Google Scholar 

  18. Segoni, S.; Piciullo, L.; Gariano, S.L.: A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15(8), 1483–1501 (2018)

    Google Scholar 

  19. Borella, J.W.; Quigley, M.; Vick, L.: Anthropocene rockfalls travel farther than prehistoric predecessors. Sci. Adv. 2(9), e1600969 (2016)

    Google Scholar 

  20. Youssef, A.M.; Pradhan, B.; Al-Kathery, M.; Bathrellos, G.D.; Skilodimou, H.D.: Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation. J. Afr. Earth Sc. 101, 309–321 (2015)

    Google Scholar 

  21. Salvini, R.; Francioni, M.; Riccucci, S.; Bonciani, F.; Callegari, I.: Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola-Iselle railway, the Italian Alps. Geomorphology 185, 110–122 (2013)

    Google Scholar 

  22. Alkhasawneh, M.S.; Tay, L.T.; Ngah, U.K.; Al-batah, M.S.; Isa, N.A.M.: Intelligent landslide system based on discriminant analysis and cascade-forward back-propagation network. Arab. J. Sci. Eng. 39(7), 5575–5584 (2014)

    Google Scholar 

  23. Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B.: Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 575, 119–134 (2017)

    Google Scholar 

  24. Hadji, R.; Rais, K.; Gadri, L.; Chouabi, A.; Hamed, Y.: Slope failure characteristics and slope movement susceptibility assessment using GIS in a medium scale: a case study from Ouled Driss and Machroha municipalities, Northeast Algeria. Arab. J. Sci. Eng. 42(1), 281–300 (2017)

    Google Scholar 

  25. Fanos, A.M.; Pradhan, B.; Aziz, A.A.; Jebur, M.N.; Park, H.J.: Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area. Environ. Earth Sci. 75(15), 1129 (2016)

    Google Scholar 

  26. Othman, A.; Sultan, M.; Becker, R.; Alsefry, S.; Alharbi, T.; Gebremichael, E.; Alharbi, H.; Abdelmohsen, K.: Use of geophysical and remote sensing data for assessment of aquifer depletion and related land deformation. Surv. Geophys. 39(3), 543–566 (2018)

    Google Scholar 

  27. Elkadiri, R.; Abotalib, A.Z.; Sultan, M.: logistic regression-based geomorphological mapping in the arabian platform: implications for the paleohydrology and the paleoclimate of the arabian desert. In Conference of the Arabian Journal of Geosciences, 77–79 (2018)

  28. Othman, A.; Abotalib, A.Z.: Land subsidence triggered by groundwater withdrawal under hyper-arid conditions: case study from Central Saudi Arabia. Environ. Earth Sci. 78(7), 243 (2019)

    Google Scholar 

  29. Skilodimou, H.D.; Bathrellos, G.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B.: Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environ. Earth Sci. 78(2), 47 (2019)

    Google Scholar 

  30. Keylock, C.; Domaas, U.: Evaluation of topographic models of rockfall travel distance for use in hazard applications. Arct. Antarct. Alp. Res. 31(3), 312–320 (1999)

    Google Scholar 

  31. Copons, R.; Vilaplana, J.M.; Linares, R.: Rockfall travel distance analysis by using empirical models (Sola d’Andorra la Vella, Central Pyrenees). Nat. Hazards Earth Syst. Sci. 9(6) (2009)

  32. Guzzetti, F.; Malamud, B.D.; Turcotte, D.L.; Reichenbach, P.: Power-law correlations of landslide areas in central Italy. Earth Planetary Sci. Lett. 195(3–4), 169–183 (2002)

    Google Scholar 

  33. Chen, G.; Zheng, L.; Zhang, Y.; Wu, J.: Numerical simulation in rockfall analysis: a close comparison of 2-D and 3-D DDA. Rock Mech. Rock Eng. 46(3), 527–541 (2013)

    Google Scholar 

  34. Trappmann, D.; Stoffel, M.; Corona, C.: Achieving a more realistic assessment of rockfall hazards by coupling three-dimensional process models and field-based tree-ring data. Earth Surf. Proc. Land. 39(14), 1866–1875 (2014)

    Google Scholar 

  35. Fanos, A.M.; Pradhan, B.: Multi-scenario rockfall hazard assessment using LiDAR data and GIS. Geotech. Geol. Eng. 34(5), 1375–1393 (2016)

    Google Scholar 

  36. Pradhan, B.; Fanos, A.M.: Rockfall hazard assessment: an overview. Laser Scan. Appl. Landslide Assess. 299–322 (2017)

  37. Lan, H.; Martin, C.D.; Lim, C.H.: RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput. Geosci. 33(2), 262–279 (2007)

    Google Scholar 

  38. Matas, G.; Lantada, N.; Corominas, J.; Gili, J.A.; Ruiz-Carulla, R.; Prades, A.: RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls. Landslides 14(5), 1565–1578 (2017)

    Google Scholar 

  39. Perret, S.; Dolf, F.; Kienholz, H.: Rockfalls into forests: analysis and simulation of rockfall trajectories—considerations with respect to mountainous forests in Switzerland. Landslides 1(2), 123–130 (2004)

    Google Scholar 

  40. Hodges, A.: Reclaiming “Allahu Akbar” from semantic pejoration. Anthropol. News 59(4), 267–272 (2018)

    Google Scholar 

  41. Banger, A.M.: A development plan to improve religious tourism in Saudi Arabia Thesis (MURP). Ball State University, Muncie (2013)

    Google Scholar 

  42. Chowdhury, S.; Al-Zahrani, M.: Implications of climate change on water resources in Saudi Arabia. Arab. J. Sci. Eng. 38(8), 1959–1971 (2013)

    Google Scholar 

  43. Greenwood, W.R.; Hadley, D.G.; Anderson, R.E.; Fleck, R.J.; Schmidt, D.L.: A Discussion on global tectonics in Proterozoic times-Late Proterozoic cratonization in southwest Saudi Arabia Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Sci. 280(1298), 517–527 (1976)

    Google Scholar 

  44. Moore, T.A.; Al-Rehaili, M.H.: Geologic map of the Makkah quadrangle, sheet 21D. Kingdom of Saudi Arabia, Saudi Arabian Directorate General of Mineral Resources Geoscience Map GM-107C, scale, 1(250,000) (1989)

  45. Abotalib, A.Z.; Mohamed, R.S.: Surface evidences supporting a probable new concept for the river systems evolution in Egypt: a remote sensing overview. Environ. Earth Sci. 69(5), 1621–1635 (2013)

    Google Scholar 

  46. Abotalib, A.Z.; Sultan, M.; Jimenez, G.; Crossey, L.; Karlstrom, K.; Forman, S.; Krishnamurthy, R.V.; Elkadiri, R.; Polyak, V.: Complexity of Saharan paleoclimate reconstruction and implications for modern human migration. Earth Planet. Sci. Lett. 508, 74–84 (2019)

    Google Scholar 

  47. Almazroui, M.; Nazrul Islam, M.; Athar, H.; Jones, P.D.; Rahman, M.A.: Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Climatol. 32(6), 953–966 (2012)

    Google Scholar 

  48. Hadadin, N.; Tarawneh, Z.; Shatanawi, K.; Banihani, Q.; Hamdi, M.R.: Hydrological analysis for floodplain hazard of Jeddah’s drainage Basin, Saudi Arabia. Arab. J. Sci. Eng. 38(12), 3275–3287 (2013)

    Google Scholar 

  49. Westra, S.; Alexander, L.V.; Zwiers, F.W.: Global increasing trends in annual maximum daily precipitation. J. Clim. 26(11), 3904–3918 (2013)

    Google Scholar 

  50. Hatheway, A.W.: The complete ISRM suggested methods for rock characterization, testing and monitoring; 1974–2006. Environ. Eng. Geosci. 15(1), 47–48 (2009). https://doi.org/10.2113/gseegeosci.15.1.47

    Article  Google Scholar 

  51. Algahtani, H.: Strategic vision of planning the central area of Makkah City. WIT Trans. Built Environ. 159, 107–120 (2016)

    Google Scholar 

  52. BenSaadAlzamel, W.: Spatial characteristics of squatter housing area in mecca by using GIS. JES J. Eng. Sci. 47(3), 326–338 (2019)

    Google Scholar 

  53. Mubarak, F.: Urban growth boundary policy and residential suburbanization: Riyadh, Saudi Arabia. Habitat International, Planning Issues in the Middle East, 567–591 (2004)

  54. Dawod, G.M.; Mirza, M.N.; Al-Ghamdi, K.A.: GIS-based estimation of flood hazard impacts on road network in Makkah city, Saudi Arabia. Environ. Earth Sci. 67(8), 2205–2215 (2012)

    Google Scholar 

Download references

Acknowledgement

The authors are grateful for Umm Al-Qura University that provides all facilities to carry out the field trip and rockfall simulations for this research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Othman.

Ethics declarations

Conflict of interest

The authors approve that the current manuscript has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A., Shaaban, F., Abotalib, A.Z. et al. Hazard Assessment of Rockfalls in Mountainous Urban Areas, Western Saudi Arabia. Arab J Sci Eng 46, 5717–5731 (2021). https://doi.org/10.1007/s13369-020-05098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05098-x

Keywords

Navigation