Skip to main content
Log in

Effect of Polyhedral Silsesquioxane Functionalized Sulfonic Acid Groups Incorporated Into Highly Sulfonated Polyphenylsulfone as Proton-Conducting Membrane

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A Composite proton exchange membrane consists of octaphenyl polyhedral silsesquioxane (POSS) has been incorporated into a highly sulfonated polyphenylsulfone (SPPSU) for potential use in fuel cell applications. The effect of modified POSS by functionalization with sulfonic acid groups (SPOSS) addition on physicochemical properties, mechanical strength, and proton conductivity of the SPPSU is examined. Results revealed that the incorporation of POSS and SPOSS has significantly improved the mechanical strength and conductivity of the SPPSU composite membranes. SPPSU-POSS composite membrane shows tough and ductile features. Meanwhile, the SPPSU-SPOSS composite membrane exhibits mechanically lower strength but greater in flexibility as compared to SPPSU-POSS composite membrane. As per expectation, the proton conductivity of the SPPSU-SPOSS composite membrane is significantly improved compared to SPPSU-POSS composite membrane according to its relatively higher water uptake value. Based on the obtained results, it has been suggested that POSS has enhanced the proton conductivity and mechanical strength of the highly sulfonated PPSU based membrane desirable to be served as a proton exchange membrane in fuel cell application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kyu, T.; Nazir, N.A.: Supramolecules impregnated proton electrolyte membranes. Curr. Opin. Chem. Eng. 2(1), 132–138, 2013

    Article  Google Scholar 

  2. Dodds, P.E.; Staffell, L.; Hawkes, A.D.; Li, F.; Grunewald, P.; McDowall, W.; Ekins, P.: Hydrogen and fuel cell technologies for heating: a review. Int. J. Hydrogen Energy 40(5), 2065–2083, 2015

    Article  Google Scholar 

  3. Kahraman, H.; Coban, A.: Performance improvement of a single pem fuel cell using an innovative flow field design methodology. Arab. J. Sci. Eng., 2020. https://doi.org/10.1007/s13369-020-04368-y.

    Article  Google Scholar 

  4. Sun, X.; Simonsen, S.C.; Norby, T.; Chatzitakis, A.: Composite membranes for high temperature PEM fuel cells and electrolysers: a critical review. Membranes 9(7), 83, 2019

    Article  Google Scholar 

  5. Meemuk, C.; Chirachanchai, S.: Stable and effective proton exchange membrane formation via cross-linking the polymeric proton donor and proton acceptorin layer-by-layer structure. Int. J. Hydrogen Energy 43(13), 6701–6710, 2018

    Article  Google Scholar 

  6. Assumma, L.; Iojoiu, C.; Ari, A.; Cointeaux, L.; Sanchez, J.-Y.: Polyethersulfone containing sulfonimide groups as proton exchange membrane fuel cells. Int. J. Hydrogen Energy 39, 2740–2750, 2014

    Article  Google Scholar 

  7. Muthumeenal, A.; Rethinam, A.J.; Nagendran, A.: Sulfonated polyethersulfone based composite membranes containing heteropolyacids laminated with polypyrrole for electrochemical energy. Solid State Ionics 296, 106–113, 2016

    Article  Google Scholar 

  8. Shin, D.W.; Kang, N.R.; Lee, K.H.; Cho, D.H.; Kim, J.H.; Lee, W.H.; Lee, Y.M.: Proton conducting, composite sulfonated polymer membrane for medium temperature and low relative humidity fuel cells. J. Power Sources 262, 162–168, 2014

    Article  Google Scholar 

  9. Ahmadian-Alam, L.; Mahdavi, H.: A novel polysulfone-based ternary nanocomposite membrane consisting of metal organic framework and silica nanoparticles: as proton exchange membrane for polymer electrolyte fuel cells. Renew Energy 126, 630–639, 2018

    Article  Google Scholar 

  10. Kim, J.-D.; Ghil, L.-J.: Annealing Effect of Highly Sulfonated Polyphenylsulfone Polymer. Int. J. Hydrogen Energy 41(27), 11794–11800, 2016

    Article  Google Scholar 

  11. Elakkiya, S.; Arthanareeswaran, G.; Venkatesh, K.; Kweon, J.: Enhancement of fuel cell properties in polyethersulfone and sulfonated poly (ether ether ketone) membranes using metal oxide nanoparticles for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 43(47), 21750–21759, 2018

    Article  Google Scholar 

  12. Hamedani, M.P.; Ataei, S.M.: Effect of sulfonation degree on molecular weight, thermal stability, and proton conductivity of poly(arylene ether sulfone)s membrane. Des. Monomers Polym. 20(1), 54–65, 2016

    Article  Google Scholar 

  13. Ru, C.; Gu, Y.; Na, H.; Li, H.; Zhao, C.: Preparation of a cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane with enhanced proton conductivity and methanol resistance by introducing an ionic liquid-impregnated metal organic framework. ACS Appl. Mater. Interface 11(35), 31899–31908, 2019

    Article  Google Scholar 

  14. Dhanapal, D.; Xiao, M.; Wang, S.; Meng, Y.: A review on sulfonated polymer composite/organic-inorganic hybrid membranes to address methanol barrier issue for methanol fuel cells. Nanomaterials 9(5), 668, 2019

    Article  Google Scholar 

  15. Janeta, M.; Szafert, S.: Synthesis, characterization and thermal properties of T8 type amido-POSS with p-halophenyl end-group. J. Organomet. Chem. 847, 173–183, 2017

    Article  Google Scholar 

  16. Kim, S.-W.; Choi, S.-Y.; Rhee, H.-W.: Sulfonated poly(etheretherketone) based nanocomposite membranes containing POSS-SA for polymer electrolyte membrane fuel cells (PEMFC). J. Membr. Sci. 566, 69–76, 2018

    Article  Google Scholar 

  17. Zhang, P.; Li, W.; Wang, L.; Gong, C.; Ding, J.; Huang, C.; Zhang, X.; Zhang, S.; Wang, L.; Bu, W.: Polydopamine-modified sulfonated polyhedral oligomeric silsesquioxane: an appealing nanofiller to address the trade-off between conductivity and stabilities for proton exchange membrane. J. Membr. Sci. 596, 117734, 2020

    Article  Google Scholar 

  18. Liu, Q.; Sun, Q.; Ni, N.; Luo, F.; Zhang, R.; Hu, S.; Bao, X.; Zhang, F.; Zhao, F.; Li, X.: Novel octopus shaped organic-inorganic composite membranes for PEMFCs. Int. J. Hydrog. Energy 41(36), 16160–16166, 2016

    Article  Google Scholar 

  19. Kaneko, Y.; Toyodome, H.; Mizumo, T.; Shikinaka, K.; Iyi, N.: Preparation of a sulfo-group-containing rod-like polysilsesquioxane with a hexagonally stacked structure and its proton conductivity. Chem. A Eur. J. 20, 9394–9399, 2014

    Article  Google Scholar 

  20. Liu, Y.; Hu, T.; Zhao, J.; Lu, L.; Muhammad, Y.; Lan, P.; He, R.; Zou, Y.; Tong, Z.: Synthesis and application of PDMS/OP-POSS membrane for the pervaporative recovery of n-butyl acetate and ethyl acetate from aqueous media. J. Membr. Sci. 591, 117324, 2019

    Article  Google Scholar 

  21. Ye, Y.S.; Rick, J.; Hwang, B.-J.: Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4, 913–963, 2012

    Article  Google Scholar 

  22. Fu, S.; Sun, Z.; Huang, P.; Li, Y.; Hu, N.: Some basic aspects of polymer nanocomposites: a critical review. Nano Mater. Sci. 1, 2–30, 2019

    Article  Google Scholar 

  23. Smitha, B.; Sridhar, S.; Khan, A.A.: Solid polymer electrolyte membranes for fuel cell applications-a review. J. Membr. Sci. 259, 10–26, 2005

    Article  Google Scholar 

  24. Rhim, J.W.; Park, B.; Lee, C.S.; Jun, J.H.; Kim, D.S.; Lee, Y.M.: Crosslinked poly (vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. J. Membr. Sci. 238, 143–151, 2014

    Article  Google Scholar 

  25. Kumari, M.; Sodaye, H.S.; Sen, D.; Bindal, R.C.: Properties and morphology studies of proton exchange membranes based on cross-linked sulfonated poly (ether ether ketone) for electrochemical application: effect of cross-linker chain length. Solid State Ion. 316, 75–84, 2018

    Article  Google Scholar 

  26. Yen, Y.C.; Ye, Y.S.; Cheng, C.C.; Lu, C.H.; Tsai, L.D.; Huang, J.M.; Chang, F.C.: The effect of sulfonic acid groups within a polyhedral oligomeric silsesquioxane containing cross-linked proton exchange membrane. Polymer 51, 84–91, 2010

    Article  Google Scholar 

  27. Subianto, S.; Mistry, M.K.; Choudhury, N.T.; Dutta, N.K.; Knott, R.: Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous PEM applications. Appl. Mater. Interfaces 1(6), 1173–1182, 2009

    Article  Google Scholar 

  28. Wong, C.Y.; Wong, W.Y.; Loh, K.S.; Daud, W.R.W.; Lim, K.L.; Khalid, M.; Walvekar, R.: Development of poly(vinyl alcohol)-based polymers as proton exchange membranes and challenges in fuel cell application: a review. Polym. Rev., 2019. https://doi.org/10.1080/15583724.2019.1641514.

    Article  Google Scholar 

  29. Zhang, Y.; Kim, J.-D.; Miyatake, K.: Effect of thermal crosslinking on the properties of sulfonated poly(phenylene sulfone)s as proton conductive membranes. J. Appl. Polym. Sci. 44218, 1–8, 2016. https://doi.org/10.1002/APP.44218.

    Article  Google Scholar 

  30. Zhai, S.; Dai, W.; Lin, J.; He, S.; Zhang, B.; Chen, L.: Enhanced proton conductivity in sulfonated poly (ether ether ketone) membranes by incorporating sodium dodecyl benzene sulfonate. Polymers 11(203), 1–11, 2019

    Google Scholar 

  31. Martos, A.M.; Biasizzo, M.; Trotta, F.; del Rio, C.; Varez, A.; Levenfeld, B.: Synthesis and characterization of sulfonated PEEK-WC-PES copolymers for fuel cell proton exchange membrane application. Eur. Polymer J. 93, 390–402, 2017

    Article  Google Scholar 

  32. Gupta, D.; Madhukar, A.; Choudhary, V.: Effect of functionality of polyhedral oligomeric silsesquioxane (POSS) on the properties of sulfonated poly(ether ether ketone) (SPEEK) based hybrid nanocomposite proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 38, 12817–12829, 2013

    Article  Google Scholar 

  33. Brijmohan, S.B.; Swier, S.; Weiss, R.A.; Shaw, M.T.: Synthesis and characterization of cross-linked sulfonated polystyrene nanoparticles. Ind. Eng. Chem. Res. 44, 8039–8045, 2005

    Article  Google Scholar 

  34. Xu, C.; Cao, Y.; Kumar, R.; Wu, X.; Wang, X.; Scott, K.: A Polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J. Mater. Chem. 21, 11359, 2011

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express gratitude to the Ministry of Higher Education (MOHE), Universiti Teknologi Malaysia (UTM) and Research Management Centre (RMC), UTM for supporting the research management activities specifically under project Grant of R. J130000.7851.4L880 MRUN 4.4: Integrated Energy and Water Generation System from Direct Ethanol Fuel Cell (DEFC) Technology. The authors would also like to acknowledge supported by the International Cooperative Graduate School (ICGS) Fellowship under the “Universiti Teknologi Malaysia-NIMS Cooperative Graduate School Program” to conduct research in National Institute of Materials Science (NIMS), Tsukuba, Japan. This work also was supported by the MEXT Program for Development of Environmental Technology using Nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juhana Jaafar or Je-Deok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamad Nor, N.A., Jaafar, J., Kim, JD. et al. Effect of Polyhedral Silsesquioxane Functionalized Sulfonic Acid Groups Incorporated Into Highly Sulfonated Polyphenylsulfone as Proton-Conducting Membrane. Arab J Sci Eng 46, 6399–6407 (2021). https://doi.org/10.1007/s13369-020-05088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05088-z

Keywords

Navigation