Skip to main content

Advertisement

Log in

Power Management, Voltage Control and Grid Synchronization of Microgrids in Real Time

  • Research Article--Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents an efficient power management, voltage balancing and grid synchronization control strategy to increase the stability and reliability of distributed energy resources (DERs)-based microgrid. The microgrid is composed of Photovoltaic, Double Fed Induction Generator-based wind and diesel generator with critical and non-critical loads. The system model and the control strategy have been developed in Real Time Digital Simulator. The coordination and power management of the DERs in both grid connected and island operation modes is implemented. One distinct challenge of microgrid operation in island mode is the stable control of frequency. A controller is proposed and implemented in the island mode for the diesel generator equipped with the required inertia to maintain the microgrid rated frequency by operating in the isochronous mode. To restore the microgrid back to the utility, the voltage, frequency and phase angle of the islanded microgrid should match with that of the grid network within specified limits to avoid transient instability. Switched capacitor banks are connected at the point of common coupling to balance the voltage for microgrid synchronization. The CIGRE medium voltage test bench system is used to implement the DERs and their controller. The proposed control approach has potential applications for the complete operation of microgrids by properly controlling the power, voltage and frequency in both grid and island modes. The real time digital simulator results verify the effectiveness and superiority of the proposed control scheme in grid connected, island and grid resynchronization scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S.: State of the art in research on microgrids: a review. IEEE Access. 3, 890–925 (2015)

    Article  Google Scholar 

  2. Planas, E.; Andreu, J.; Gárate, J.I.; de Alegría, I.M.; Ibarra, E.: AC and DC technology in microgrids: a review. Renew. Sustain. Energy Rev. 43, 726–749 (2015)

    Article  Google Scholar 

  3. Nejad, R.R.; Tafreshi, S.M.M.: Operation planning of a smart microgrid including controllable loads and intermittent energy resources by considering uncertainties. Arab. J. Sci. Eng. 39, 6297–6315 (2014)

    Article  Google Scholar 

  4. Radwan, A.A.A.; Mohamed, Y.A.R.I.: Networked control and power management of AC/DC hybrid microgrids. IEEE Syst. J. 11, 1662–1673 (2017)

    Article  Google Scholar 

  5. Che, L.; Shahidehpour, M.; Alabdulwahab, A.; Al-Turki, Y.: Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Trans. Smart Grid 6, 3042–3051 (2015)

    Article  Google Scholar 

  6. Xin, H.; Zhang, L.; Wang, Z.; Gan, D.; Wong, K.P.: Control of island AC microgrids using a fully distributed approach. IEEE Trans. Smart Grid 6, 943–945 (2015)

    Article  Google Scholar 

  7. Guide for design, operation, and integration of distributed resource island systems with electric power systems. IEEE STD 1547.4-2011, 1–54

  8. Kaur, A.; Kaushal, J.; Basak, P.: A review on microgrid central controller. Renew. Sustain. Energy Rev. 55, 338–345 (2016)

    Article  Google Scholar 

  9. Salas-Puente, R.; Marzal, S.; González-Medina, R.; Figueres, E.; Garcera, G.: Experimental study of a centralized control strategy of a DC microgrid working in grid connected mode. Energies 10, 1627 (2017). https://doi.org/10.3390/en10101627

    Article  Google Scholar 

  10. Zhuo, W.; Savkin, A.V.; Meng, K.: Decentralized optimal control of a microgrid with solar PV, BESS and thermostatically controlled loads. Energies 12, 2111 (2019). https://doi.org/10.3390/en12112111

    Article  Google Scholar 

  11. Schütz, T.; Hu, X.; Fuchs, M.; Müller, D.: Optimal design of decentralized energy conversion systems for smart microgrids using decomposition methods. Energy 156, 250–263 (2018)

    Article  Google Scholar 

  12. Worku, M.Y.; Hassan, M.A.; Abido, M.: Real time energy management and control of renewable energy based microgrid in grid connected and island modes. Energies 12, 276 (2019). https://doi.org/10.3390/en12020276

    Article  Google Scholar 

  13. Xia, Y.; Wei, W.; Yu, M.; Wang, X.; Peng, Y.: Power management for a hybrid AC/DC microgrid with multiple sub grids. IEEE Trans. Power Electron. 33, 3520–3533 (2018)

    Article  Google Scholar 

  14. Peyghami, S.; Mokhtari, H.; Blaabjerg, F.: Autonomous power management in LVDC microgrids based on a superimposed frequency droop. IEEE Trans. Power Electron. 33, 5341–5350 (2018)

    Article  Google Scholar 

  15. Hassan, M.A.; Worku, M.Y.; Abido, M.A.: Optimal design and real time implementation of autonomous microgrid including active load. Energies 11, 1109 (2018)

    Article  Google Scholar 

  16. Jadidbonab, M.; Mohammadi-Ivatloo, B.; Marzband, M.; Siano, P.: Short-term self-scheduling of virtual energy hub plant within thermal energy market. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/tie.2020.2978707

    Article  Google Scholar 

  17. Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Pouresmaeil, E.; Guerrero, J.M.; Lightbody, G.: Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations. Renew. Energy 126, 95–106 (2018)

    Article  Google Scholar 

  18. Mirzaei, M.A.; Sadeghi-Yazdankhah, A.; Mohammadi-Ivatloo, B.; Marzband, M.; Shafie-khah, M.; Catalao, J.P.S.: Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products. Energy 189, 116195 (2019)

    Article  Google Scholar 

  19. Gholinejad, H.R.; Loni, A.; Adabi, J.; Marzband, M.: A hierarchical energy management system for multiple home energy hubs in neighborhood grids. J. Build. Eng. (2019). https://doi.org/10.1016/j.jobe.2019.101028

    Article  Google Scholar 

  20. Cho, C.; Jeon, J.-H.; Kim, J.-Y.; Kwon, S.; Park, K.; Kim, S.: Active synchronizing control of a microgrid. IEEE Trans. Power Electron. 26(12), 3707–3718 (2011)

    Article  Google Scholar 

  21. Cagnano, A.; De Tugliea, E.; Mancarella, P.: Microgrids: overview and guidelines for practical implementations and operation. Appl. Energy 258, 114039 (2020)

    Article  Google Scholar 

  22. Sun, Y.; Zhong, C.; Hou, X.; Yang, J.; Han, H.; Guerrero, J.M.: Distributed cooperative synchronization strategy for multi-bus microgrids. Electr. Power Energy Syst. 86, 18–28 (2017)

    Article  Google Scholar 

  23. Lee, C.-T.; Jiang, R.-P.; Cheng, P.-T.: A grid synchronization method for droop-controlled distributed energy resource converters. IEEE Trans. Ind. Appl. 49(2), 954–962 (2013)

    Article  Google Scholar 

  24. Majumder, R.; Ghosh, A.; Ledwich, G.; Zare, F.: Power management and power flow control with back-to-back converters in a utility connected microgrid. IEEE Trans. Power Syst. 25(2), 821–834 (2010)

    Article  Google Scholar 

  25. Yazdani, D.; Bakhshai, A.; Joos, G.; Mojiri, M.: A nonlinear adaptive synchronization technique for grid-connected distributed energy sources. IEEE Trans. Power Electron. 23(4), 2181–2186 (2008)

    Article  Google Scholar 

  26. IEEE Application Guide for IEEE Std 1547(TM), 1547.2-2008: IEEE standard for interconnecting distributed resources with electric power systems, 1–217 (2009)

  27. Ellis, A.; Nelson, R.; Engeln, E.V.; Walling, R.; McDowell, J.; Casey, L.; Seymour, E.; Peter, W.; Barker, C.; Kirby, B.: Reactive power interconnection requirements for PV and wind plants-recommendations to NERC. Sandia National Laboratories (2012)

  28. Laaksonen, H.; Kauhaniemi, K.: Synchronized re-connection of island operated a LV microgrid back to utility grid. In: Innovative Smart Grid Technologies Conference Europe (ISGT Europe) IEEE PES.1–8 (2010)

  29. Lidula, N.W.A.; Rajapakse, A.D.: Voltage balancing and synchronization of microgrids with highly unbalanced loads. Renew. Sustain. Energy Rev. 31, 907–920 (2014)

    Article  Google Scholar 

  30. Bajwa, A.A.; Mokhlis, H.; Mekhilef, S.; Mubin, M.: Enhancing power system resilience leveraging microgrids: a review. J. Renew. Sustain. Energy 11, 035503 (2019). https://doi.org/10.1063/1.5066264

    Article  Google Scholar 

  31. Giraldo, J.; Mojica-Nava, E.; Quijano, N.: Synchronization of isolated microgrids with a communication infrastructure using energy storage systems. Electr. Power Energy Syst. 63, 71–82 (2014)

    Article  Google Scholar 

  32. Choi, K.-Y.; Kim, S.-I.; Jung, S.-H.; Kim, R.-Y.: Selective frequency synchronization technique for fast grid connection of islanded microgrid using prediction method. Electr. Power Energy Syst. 111, 114–124 (2019)

    Article  Google Scholar 

  33. CIGRE C6.04.02 Task Force, Benchmark modeling and simulation for analysis, design, and validation of distributed energy systems (2006)

  34. Worku, M.Y.: Power smoothing control of PMSG based wind generation using supercapacitor energy storage system. Int. J. Emerg. Electr. Power Syst. (2017). https://doi.org/10.1515/ijeeps-2016-0181

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the Deanship of Scientific Research, King Fahd University of Petroleum and Minerals, through Direct Funded Research Project # DF191004. Dr. Abido also would like to acknowledge the support of K.A. CARE Energy Research & Innovation Center (ERIC), Dhahran, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Y. Worku.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worku, M.Y., Hassan, M.A. & Abido, M.A. Power Management, Voltage Control and Grid Synchronization of Microgrids in Real Time. Arab J Sci Eng 46, 1411–1429 (2021). https://doi.org/10.1007/s13369-020-05062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05062-9

Keywords

Navigation