Skip to main content
Log in

Distribution and Diversity of Coccolithophores in Surface Sediments of the Northern Red Sea: Coccolith Accumulation in Brine Pools and Observation of Productivity

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A quantitative analysis of coccoliths is presented in 18 core-top samples ranging between 26° N and 21° N and covering two major deep brine pools in the northern part of the Red Sea. Non-brine sites are characterized by rich coccoliths that may reach up to 3.31 × 109 coccoliths/g made by 22 species, whereas brine sites of Shaban and Kebrit Deeps with additional two non-brine sites are characterized by a decline in coccoliths/g (3.25 × 108 coccoliths/g), Shannon diversity, CaCO3 (%), and high TOC (%). Carbonate dissolution, inferred by qualitative observation and quantitative indices, was only observed at one brine site GeoB7828 in Kebrit Deep. This suggests that the decline in coccolith assemblages may not entirely be attributed to carbonate dissolution. The major decline, however, is probably related to the suspension of fecal pellets and marine aggregates containing delicate coccolith shields within a nepheloid layer and subsequently grazed by zooplankters in which reduced the numbers of coccolith that reached the bottom of the brine sites, or alternatively a deep-sea flow current that carried and remobilized some suspended particles outside the brine pool. Latitudinal fluctuations of eutrophic/oligotrophic coccoliths suggest profound trophic changes in the photic zone in the northern part of the Red Sea. C. braarudii, a valuable nutrient-indicator species is here reported for the first time, along with G. oceanica, H. carteri as well as biogenic opal dominating the assemblage between 26° N and 24° N, suggesting elevated nutrient conditions and supporting recent high chl-a records, whereas areas between 21° N and 23° N lie under oligotrophic conditions due to the presence of U. sibogae, U. tenuis, R. clavigera, F. profunda, and S. pulchra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Raitsos, D.E.; Pradhan, Y.; Brewin, R.J.; Stenchikov, G.; Hoteit, I.: Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS ONE 8(6), e64909 (2013). https://doi.org/10.1371/journal.pone.0064909

    Article  Google Scholar 

  2. Eshel, G.; Naik, N.H.: Climatological coastal jet collision, intermediate water formation, and the general circulation of the Red Sea. J. Phys. Oceanogr. 27(7), 1233–1257 (1997)

    Article  Google Scholar 

  3. Weikert, H.: Plankton and the pelagic environment. In: Edwards, A.J, Head, S.M (eds.) Key Environments: Red Sea. Pergamon Press, Oxford, pp. 90–111 (1987)

    Google Scholar 

  4. Acker, J.; Leptoukh, G.; Shen, S.; Zhu, T.; Kempler, S.: Remotely-sensed chlorophyll a observations of the northern Red Sea indicate seasonal variability and influence of coastal reefs. J. Mar. Syst. 69(3–4), 191–204 (2008)

    Article  Google Scholar 

  5. Alkawri, A.; Gamoyo, M.: Remote sensing of phytoplankton distribution in the Red Sea and Gulf of Aden. Acta Oceanol. Sin. 33(9), 93–99 (2014)

    Article  Google Scholar 

  6. Qurban, M.A.; Balala, A.C.; Kumar, S.; Bhavya, P.; Wafar, M.: Primary production in the northern Red Sea. J. Mar. Syst. 132, 75–82 (2014)

    Article  Google Scholar 

  7. Qurban, M.A.; Wafar, M.; Jyothibabu, R.; Manikandan, K.: Patterns of primary production in the Red Sea. J. Mar. Syst. 169, 87–98 (2017)

    Article  Google Scholar 

  8. Zhan, P.; Krokos, G.; Guo, D.; Hoteit, I.: Three-dimensional signature of the Red Sea Eddies and Eddy-induced transport. Geophys. Res. Lett. 46(4), 2167–2177 (2019)

    Article  Google Scholar 

  9. Broerse, A.; Brummer, G.-J.; Van Hinte, J.: Coccolithophore export production in response to monsoonal upwelling off Somalia (northwestern Indian Ocean). Deep Sea Res. Part II 47(9–11), 2179–2205 (2000)

    Article  Google Scholar 

  10. Hartmann, M.; Scholten, J.C.; Stoffers, P.; Wehner, F.: Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep. Mar. Geol. 144(4), 311–330 (1998)

    Article  Google Scholar 

  11. Schmidt, M.; Al-Farawati, R.; Botz, R.: Geochemical classification of brine-filled Red Sea deeps. In: The Red Sea, pp. 219–233. Springer, Berlin (2015).

  12. Kaartvedt, S.; Antunes, A.; Røstad, A.; Klevjer, T.A.; Vestheim, H.: Zooplankton at deep Red Sea brine pools. J. Plankton Res. 38(3), 679–684 (2016)

    Article  Google Scholar 

  13. Ryan, W.B.; Thorndike, E.M.; Ewing, M.; Ross, D.A.: Suspended matter in the Red Sea brines and its detection by light scattering. In: Hot Brines and Recent Heavy Metal Deposits in the Red Sea, pp. 153–157. Springer, Berlin (1969).

  14. Seeberg-Elverfeldt, I.A.; Lange, C.B.; Arz, H.W.; Pätzold, J.; Pike, J.: The significance of diatoms in the formation of laminated sediments of the Shaban Deep, Northern Red Sea. Mar. Geol. 209(1–4), 279–301 (2004)

    Article  Google Scholar 

  15. Seeberg-Elverfeldt, I.A.; Lange, C.B.; Pätzold, J.; Kuhn, G.: Laminae type and possible mechanisms for the formation of laminated sediments in the Shaban Deep. Northern Red Sea. Ocean Sci. 1, 113–126 (2005). https://doi.org/10.5194/os-1-113-2005

    Article  Google Scholar 

  16. Abu-Zied, R.H.: Effect of the Red Sea brine-filled deeps (Shaban and Kebrit) on the composition and abundance of benthic and planktonic foraminifera. Arab. J. Geosci. 6(10), 3809–3826 (2013)

    Article  Google Scholar 

  17. Billard, C.; Inouye, I.: What is new in coccolithophore biology? In: Coccolithophores, pp. 1–29. Springer, Berlin (2004)

  18. McIntyre, A.; Bé, A.W.; Roche, M.B.: Modern Pacific Coccolithophorida: a paleontological thermometer. Trans. N. Y. Acad. Sci. 32(6 Series II), 720–731 (1970)

    Article  Google Scholar 

  19. Okada, H.; Honjo, S.: The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Res. Oceanogr. Abstr. 4, 355–374 (1973)

    Article  Google Scholar 

  20. Winter, A.; Jordan, R.W.; Roth, P.H.: Biogeography of living coccolithophores in ocean waters. In: Winter, A., Siesser, W.G. (eds.) Coccolithophores, pp 161–176. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  21. Baumann, K.-H.; Andruleit, H.; Böckel, B.; Geisen, M.; Kinkel, H.: The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and palaeoproductivity: a review. Paläontol. Z. 79(1), 93–112 (2005)

    Article  Google Scholar 

  22. McIntyre, A.; McIntyre, R.: Coccolith concentrations and differential solution in oceanic sediments. In: The Micropaleontology of Oceans, pp. 253–261. Cambridge University Press, Cambridge (1971).

  23. Roth, P.H.; Berger, W.H.: Distribution and dissolution of Coccoliths in the South and Central Pacific. Cushman Found. Foraminifer. Res. 13, 87–113 (1975)

    Google Scholar 

  24. Honjo, S.; Manganini, S.J.; Cole, J.J.: Sedimentation of biogenic matter in the deep ocean. Deep Sea Res. Part A Oceanogr. Res. Pap. 29(5), 609–625 (1982)

    Article  Google Scholar 

  25. Ziveri, P.; Thunell, R.: Coccolithophore export production in Guaymas Basin, Gulf of California: response to climate forcing. Deep Sea Res. Part II 47(9–11), 2073–2100 (2000)

    Article  Google Scholar 

  26. Legge, H.L.; Mutterlose, J.; Arz, H.W.: Climatic changes in the northern Red Sea during the last 22,000 years as recorded by calcareous nannofossils. Paleoceanography 21, PA1003 (2006). https://doi.org/10.1029/2005PA001142

    Article  Google Scholar 

  27. Malinverno, E.; Triantaphyllou, M.; Stavrakakis, S.; Ziveri, P.; Lykousis, V.: Seasonal and spatial variability of coccolithophore export production at the South-Western margin of Crete (Eastern Mediterranean). Mar. Micropaleontol. 71(3–4), 131–147 (2009)

    Article  Google Scholar 

  28. Saavedra-Pellitero, M.; Flores, J.-A.; Baumann, K.-H.; Sierro, F.-J.: Coccolith distribution patterns in surface sediments of Equatorial and Southeastern Pacific Ocean. Geobios 43(1), 131–149 (2010)

    Article  Google Scholar 

  29. Stolz, K.; Baumann, K.-H.; Mersmeyer, H.: Extant coccolithophores from the western equatorial Indian Ocean off Tanzania and coccolith distribution in surface sediments. Micropaleontology 61(6), 473–488 (2015)

    Google Scholar 

  30. McIntyre, A.: The coccolithophorida in Red Sea sediments. In: Hot Brines and Recent Heavy Metal Deposits in the Red Sea, pp. 299–305. Springer, Berlin (1969).

  31. Okada, H.; Honjo, S.: Distribution of coccolithophores in marginal seas along the western Pacific Ocean and in the Red Sea. Mar. Biol. 31(3), 271–285 (1975)

    Article  Google Scholar 

  32. Kleijne, A.; Kroon, D.; Zevenboom, W.: Phytoplankton and foraminiferal frequencies in northern Indian Ocean and Red Sea surface waters. Neth. J. Sea Res. 24(4), 531–539 (1989)

    Article  Google Scholar 

  33. Kleijne, A.: Holococcolithophorids from the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean. Mar. Micropaleontol. 17(1–2), 1–76 (1991)

    Article  Google Scholar 

  34. Kleijne, A.: Extant Rhabdosphaeraceae (coccolithophorids, class Prymnesiophyceae) from the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean. vol. 100-101. Nationaal Natuurhistorisch Museum Leiden (1992).

  35. Winter, A.; Reiss, Z.; Luz, B.: Distribution of living coccolithophore assemblages in the Gulf of Elat (‘Aqaba). Mar. Micropaleontol. 4, 197–223 (1979)

    Article  Google Scholar 

  36. Pätzold, J., Bohrmann, G., Hübscher, C.: Black Sea-Mediterranean-Red Sea, Cruise No. 52, January 2–March 27, 2002, Istanbul-Limassol, vol. 3. Leitstelle Meteor Institut für Meereskunde der Universität Hamburg (2003)

  37. Bordiga, M.; Bartol, M.; Henderiks, J.: Absolute nannofossil abundance estimates: quantifying the pros and cons of different techniques. Rev. Micropaléontol. 58(3), 155–165 (2015)

    Article  Google Scholar 

  38. Koch, C.; Young, J.R.: A simple weighing and dilution technique for determining absolute abundances of coccoliths from sediment samples. J. Nannoplankton Res. 29(1), 67–69 (2007)

    Google Scholar 

  39. Hammer, Ø.; Harper, D.A.; Ryan, P.D.: PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001)

    Google Scholar 

  40. Kameo, K.: Late Pliocene Caribbean surface water dynamics and climatic changes based on calcareous nannofossil records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 179(3–4), 211–226 (2002)

    Article  Google Scholar 

  41. Dittert, N.; Baumann, K.-H.; Bickert, T.; Henrich, R.; Huber, R.; Kinkel, H.; Meggers, H.: Carbonate dissolution in the deep-sea: methods, quantification and paleoceanographic application. In: Use of Proxies in Paleoceanography, pp. 255–284. Springer, Berlin (1999)

  42. Boeckel, B.; Baumann, K.-H.: Distribution of coccoliths in surface sediments of the south-eastern South Atlantic Ocean: ecology, preservation and carbonate contribution. Mar. Micropaleontol. 51(3–4), 301–320 (2004)

    Article  Google Scholar 

  43. Okada, H.: Biogeographic control of modern nannofossil assemblages in surface sediments of Ise Bay, Mikawa Bay and Kumano-nada, off coast of central Japan. Memorie di scienze Geologiche, gia Memorie degli Istituti di Geologia e Mineralogia dell’Universita di Padova 43, 431–449 (1992)

    Google Scholar 

  44. Heiri, O.; Lotter, A.F.; Lemcke, G.: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25(1), 101–110 (2001)

    Article  Google Scholar 

  45. Roth, P.H.; Coulbourn, W.T.: Floral and solution patterns of coccoliths in surface sediments of the North Pacific. Mar. Micropaleontol. 7(1), 1–52 (1982)

    Article  Google Scholar 

  46. Blum, N.; Puchelt, H.: Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban Deeps, Red Sea. Miner. Depos. 26(3), 217–227 (1991)

    Article  Google Scholar 

  47. Honjo, S.; Roman, M.R.: Marine copepod fecal pellets: production, preservation and sedimentation. J. Mar. Res. 36(1), 45–57 (1978)

    Google Scholar 

  48. Honjo, S.: Coccoliths: production, transportation and sedimentation. Mar. Micropaleontol. 1, 65–79 (1976)

    Article  Google Scholar 

  49. Mayers, K.M.; Poulton, A.J.; Daniels, C.J.; Wells, S.; Woodward, E.; Tarran, G.A.; Widdicombe, C.E.; Mayor, D.; Atkinson, A.; Giering, S.: Growth and mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic Sea, April 2015). Prog. Oceanogr. 177, 101928 (2019)

    Article  Google Scholar 

  50. McIntyre, A.; Bé, A.W.: Modern coccolithophoridae of the Atlantic Ocean—I. Placoliths and cyrtoliths. In: Deep Sea Research and Oceanographic Abstracts, vol. 5, pp. 561–597 (1967)

  51. Dimiza, M.D.; Triantaphyllou, M.V.; Malinverno, E.; Psarra, S.; Karatsolis, B.-T.; Mara, P.; Lagaria, A.; Gogou, A.: The composition and distribution of living coccolithophores in the Aegean Sea (NE Mediterranean). Micropaleontology 521–540 (2015)

  52. Ziveri, P.; Baumann, K.-H.; Böckel, B.; Bollmann, J.; Young, J.R.: Biogeography of selected Holocene coccoliths in the Atlantic Ocean. In: Coccolithophores, pp. 403–428. Springer, Berlin (2004)

  53. Cachao, M.; Moita, M.: Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia. Mar. Micropaleontol. 39(1–4), 131–155 (2000)

    Article  Google Scholar 

  54. Parente, A.; Cachão, M.; Baumann, K.-H.; de Abreu, L.; Ferreira, J.: Morphometry of Coccolithus pelagicus sl (Coccolithophore, Haptophyta) from offshore Portugal, during the last 200 kyr. Micropaleontology 50(Suppl_1), 107–120 (2004)

    Article  Google Scholar 

  55. Giraudeau, J.: Distribution of recent nannofossils beneath the Benguela system: southwest African continental margin. Mar. Geol. 108(2), 219–237 (1992)

    Article  Google Scholar 

  56. Dimiza, M.D.; Triantaphyllou, M.V.; Malinverno, E.: New evidence for the ecology of Helicosphaera carteri in polluted coastal environments (Elefsis Bay, Saronikos Gulf, Greece). J. Nannoplankton Res. 34, 37–43 (2014)

    Google Scholar 

  57. Ehrhardt, A.; Hübscher, C.: The northern Red Sea in transition from rifting to drifting-lessons learned from ocean deeps. In: The Red Sea, pp. 99–121. Springer, Berlin (2015)

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. D-278-150-1440. The author gratefully acknowledges the DSR technical and financial support. I would like to thank the two anonymous reviewers and Drs. Jürgen Pätzold, Karl Baumann, Iyad Zalmout, Mohamed El-Hag, Aaron Avery, and David Bord for initial constructive comments and suggestions that improve the initial manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed H. Aljahdali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljahdali, M.H. Distribution and Diversity of Coccolithophores in Surface Sediments of the Northern Red Sea: Coccolith Accumulation in Brine Pools and Observation of Productivity. Arab J Sci Eng 46, 601–615 (2021). https://doi.org/10.1007/s13369-020-05021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05021-4

Keywords

Navigation