Skip to main content

Fabrication of Polyethersulfone/Functionalized MWCNTs Nanocomposite and Investigation its Efficiency as an Adsorbent of Pb(II) Ions

Abstract

The novel polyethersulfone/ethylenediamine-functionalized multiwall carbon nanotubes (PES/MWCNTs-NH2) nanocomposite was synthesized and introduced as an efficient adsorbent for Pb(II) removal from aqueous solutions. The characterization analyses, including FTIR, TGA, SEM, and EDX, confirmed the successful functionalization of MWCNTs through three steps acidic treatment, acylation with SOCL2, and amine functionalization. The influence of MWCNTs functionalization, pH, stirring speed, contact time, and adsorbent dosage on the Pb(II) adsorption by PES/MWCNTs-NH2 nanocomposite was investigated. The optimum condition was obtained on neutral pH, contact time 10 min, stirring speed 400 rpm, and adsorbent dosage 0.1 g of PES/1% MWCNTs-NH2, which reached the maximum adsorption capacity of 272 mg/g. The equilibrium studies were investigated by consideration of Langmuir, Freundlich, Temkin, and D-R isotherm models, which revealed that Pb(II) adsorption onto PES/MWCNTs-NH2 was performed on a heterogeneous surface with a non-uniform distribution of heat of adsorption. Also, it confirmed that the chemisorption process was favorable. The kinetic studies through pseudo-first-order, pseudo-second-order (as a reaction-based model), and Boyd models (diffusion-based model) showed that the chemisorption adsorption rate was fast, and controlled by film diffusion. Thermodynamic studies indicated that Pb(II) adsorption process onto PES/MWCNTs-NH2 was spontaneous, endothermic, by increasing the randomness of the solid/liquid interface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Qu, X.; Alvarez, P.J.; Li, Q.: Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)

    Google Scholar 

  2. UNESCO: The United Nations world water development report 2018: nature‐based solutions for water. (2018)

  3. WWAP, U.: World Water Assessment Programme: The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk. In. Paris: UNESCO, (2012)

  4. Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q.: Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 211, 317–331 (2012)

    Google Scholar 

  5. Arbabi, M.; Hemati, S.; Amiri, M.: Removal of lead ions from industrial wastewater: a review of removal methods. Int. J. Epidemiol. Res. 2, 105–109 (2015)

    Google Scholar 

  6. Safatian, F.; Doago, Z.; Torabbeigi, M.; Rahmani Shams, H.; Ahadi, N.: Lead ion removal from water by hydroxyapatite nanostructures synthesized from egg sells with microwave irradiation. Appl. Water Sci. 9(4), 108 (2019). https://doi.org/10.1007/s13201-019-0979-8

    Article  Google Scholar 

  7. Cheema, A.I.; Liu, G.; Yousaf, B.; Abbas, Q.; Zhou, H.: A comprehensive review of biogeochemical distribution and fractionation of lead isotopes for source tracing in distinct interactive environmental compartments. Sci. Total Environ. 719, 135658 (2019)

    Google Scholar 

  8. O’Connor, D.; Hou, D.; Ye, J.; Zhang, Y.; Ok, Y.S.; Song, Y.; Coulon, F.; Peng, T.; Tian, L.: Lead-based paint remains a major public health concern: a critical review of global production, trade, use, exposure, health risk, and implications. Environ. Int. 121, 85–101 (2018)

    Google Scholar 

  9. Sadeghalvad, B.; Karimi, H.S.; Hosseinzadegan, H.; Azadmehr, A.R.: A comparative study on the removal of lead from industrial wastewater by adsorption onto raw and modified Iranian Bentonite (from Isfahan area). Desalination Water Treat. 52(34–36), 6440–6452 (2014). https://doi.org/10.1080/19443994.2013.823352

    Article  Google Scholar 

  10. Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V.K.: Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies. J. Hazard. Mater. 125(1–3), 211–220 (2005)

    Google Scholar 

  11. Sulaymon, A.H.; Abid, B.A.; Al-Najar, J.A.: Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers. Chem. Eng. J. 155(3), 647–653 (2009). https://doi.org/10.1016/j.cej.2009.08.021

    Article  Google Scholar 

  12. Sadeghalvad, B.; TorabzadehKashi, M.; Azadmehr, A.R.: A comparative study of Cu(П) and Pb(П) adsorption by Iranian bentonite (Birjand area) in aqueous solutions. Adv. Environ. Technol. 1(2), 93–100 (2015). https://doi.org/10.22104/aet.2015.186

    Article  Google Scholar 

  13. Li, K.; Wang, X.: Adsorptive removal of Pb(II) by activated carbon prepared from Spartina alterniflora: equilibrium, kinetics and thermodynamics. Biores. Technol. 100(11), 2810–2815 (2009)

    Google Scholar 

  14. Jokar, M.; Mirghaffari, N.; Soleimani, M.; Jabbari, M.: Preparation and characterization of novel bio ion exchanger from medicinal herb waste (chicory) for the removal of Pb2+ and Cd2+ from aqueous solutions. J. Water Process Eng. 28, 88–99 (2019)

    Google Scholar 

  15. Berbar, Y.; Hammache, Z.E.; Bensaadi, S.; Soukeur, R.; Amara, M.; Van der Bruggen, B.: Effect of functionalized silica nanoparticles on sulfonated polyethersulfone ion exchange membrane for removal of lead and cadmium ions from aqueous solutions. J. Water Process Eng. 32, 100953 (2019)

    Google Scholar 

  16. Rasaki, S.A.; Thomas, T.; Yang, M.: Co-precipitation strategy for engineering pH-tolerant and durable ZnO@ MgO nanospheres for efficient, room-temperature, chemisorptive removal of Pb(II) from water. J. Environ. Chem. Eng. 7(2), 103019 (2019)

    Google Scholar 

  17. Cao, Y.; Xiao, W.; Shen, G.; Ji, G.; Zhang, Y.; Gao, C.; Han, L.: Carbonization and ball milling on the enhancement of Pb(II) adsorption by wheat straw: competitive effects of ion exchange and precipitation. Biores. Technol. 273, 70–76 (2019)

    Google Scholar 

  18. Zhao, J.; Yang, H.; Nan, C.; Yang, B.; Liu, D.; Xu, B.: Kinetics of Pb evaporation from Pb–Sn liquid alloy in vacuum distillation. Vacuum 141, 10–14 (2017)

    Google Scholar 

  19. Bassyouni, D.; Mohamed, M.; El-Ashtoukhy, E.-S.; El-Latif, M.A.; Zaatout, A.; Hamad, H.: Fabrication and characterization of electrospun Fe3O4/o-MWCNTs/polyamide 6 hybrid nanofibrous membrane composite as an efficient and recoverable adsorbent for removal of Pb(II). Microchem. J. 149, 103998 (2019)

    Google Scholar 

  20. RoyChoudhury, P.; Majumdar, S.; Sarkar, S.; Kundu, B.; Sahoo, G.C.: Performance investigation of Pb(II) removal by synthesized hydroxyapatite based ceramic ultrafiltration membrane: bench scale study. Chem. Eng. J. 355, 510–519 (2019)

    Google Scholar 

  21. Mahmodi, G.; Dangwal, S.; Zarrintaj, P.; Zhu, M.; Mao, Y.; Mcllroy, D.N.; Saeb, M.R.; Vatanpour, V.; Ramsey, J.D.; Kim, S.-J.: NaA zeolite-coated meshes with tunable hydrophilicity for oil–water separation. Sep. Purif. Technol. 240, 116630 (2020)

    Google Scholar 

  22. Sadeghizadeh, A.; Ebrahimi, F.; Heydari, M.; Tahmasebikohyani, M.; Ebrahimi, F.; Sadeghizadeh, A.: Adsorptive removal of Pb(II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study. J. Environ. Manag. 232, 342–353 (2019)

    Google Scholar 

  23. Liu, Y.; Gao, Q.; Li, C.; Liu, S.; Xia, K.; Han, B.; Zhou, C.: Effective coating of crosslinked polyethyleneimine on elastic spongy monolith for highly efficient batch and continuous flow adsorption of Pb(II) and acidic red 18. Chem. Eng. J. 391, 123610 (2019)

    Google Scholar 

  24. Chu, Y.; Khan, M.A.; Wang, F.; Xia, M.; Lei, W.; Zhu, S.: Kinetics and equilibrium isotherms of adsorption of Pb(II) and Cu(II) onto raw and arginine-modified montmorillonite. Adv. Powder Technol. 30(5), 1067–1078 (2019)

    Google Scholar 

  25. Wang, N.; Jin, R.-N.; Omer, A.; Ouyang, X.-K.: Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal: isotherm, kinetics, and thermodynamic studies. Int. J. Biol. Macromol. 102, 232–240 (2017)

    Google Scholar 

  26. Hu, D.; Lian, Z.; Xian, H.; Jiang, R.; Wang, N.; Weng, Y.; Peng, X.; Wang, S.; Ouyang, X.K.: Adsorption of Pb(II) from aqueous solution by polyacrylic acid grafted magnetic chitosan nanocomposite. Int. J. Biol. Macromol. 154, 1537–1547 (2019)

    Google Scholar 

  27. Drweesh, S.A.; Fathy, N.A.; Wahba, M.A.; Hanna, A.A.; Akarish, A.I.; Elzahany, E.A.; El-Sherif, I.Y.; Abou-El-Sherbini, K.S.: Equilibrium, kinetic and thermodynamic studies of Pb(II) adsorption from aqueous solutions on HCl-treated Egyptian kaolin. J. Environ. Chem. Eng. 4(2), 1674–1684 (2016)

    Google Scholar 

  28. Badawi, M.; Negm, N.; Kana, M.A.; Hefni, H.; Moneem, M.A.: Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: isotherms, kinetics, thermodynamics and process mechanism. Int. J. Biol. Macromol. 99, 465–476 (2017)

    Google Scholar 

  29. Zarrintaj, P.; Mahmodi, G.; Manouchehri, S.; Mashhadzadeh, A.H.; Khodadadi, M.; Servatan, M.; Ganjali, M.R.; Azambre, B.; Kim, S.J.; Ramsey, J.D.: Zeolite in tissue engineering: opportunities and challenges. MedComm 1(1), 5–34 (2020)

    Google Scholar 

  30. Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112(10), 5073–5091 (2012)

    Google Scholar 

  31. Unuabonah, E.; Adebowale, K.; Olu-Owolabi, B.; Yang, L.; Kong, L.: Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93(1–2), 1–9 (2008)

    Google Scholar 

  32. Wang, Q.; Chang, X.; Li, D.; Hu, Z.; Li, R.; He, Q.: Adsorption of chromium (III), mercury (II) and lead (II) ions onto 4-aminoantipyrine immobilized bentonite. J. Hazard. Mater. 186(2–3), 1076–1081 (2011)

    Google Scholar 

  33. Bhattacharyya, K.G.; Gupta, S.S.: Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: influence of acid activation of the clays. Colloids Surf., A 277(1–3), 191–200 (2006)

    Google Scholar 

  34. Eren, E.: Removal of lead ions by Unye (Turkey) bentonite in iron and magnesium oxide-coated forms. J. Hazard. Mater. 165(1–3), 63–70 (2009)

    Google Scholar 

  35. Rasoulzadeh, H.; Dehghani, M.H.; Mohammadi, A.S.; Karri, R.R.; Nabizadeh, R.; Nazmara, S.; Kim, K.-H.; Sahu, J.: Parametric modelling of Pb(II) adsorption onto chitosan-coated Fe3O4 particles through RSM and DE hybrid evolutionary optimization framework. J. Mol. Liq. 297, 111893 (2019)

    Google Scholar 

  36. Fan, C.; Li, K.; Li, J.; Ying, D.; Wang, Y.; Jia, J.: Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles. J. Hazard. Mater. 326, 211–220 (2017)

    Google Scholar 

  37. Hu, L.; Yang, Z.; Cui, L.; Li, Y.; Ngo, H.H.; Wang, Y.; Wei, Q.; Ma, H.; Yan, L.; Du, B.: Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue. Chem. Eng. J. 287, 545–556 (2016)

    Google Scholar 

  38. Naiya, T.K.; Bhattacharya, A.K.; Mandal, S.; Das, S.K.: The sorption of lead (II) ions on rice husk ash. J. Hazard. Mater. 163(2–3), 1254–1264 (2009)

    Google Scholar 

  39. Jiang, K.; Sun, T.-H.; Sun, L.-N.; Li, H.-B.: Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline. J. Environ. Sci. 18(6), 1221–1225 (2006)

    Google Scholar 

  40. Meena, A.K.; Kadirvelu, K.; Mishra, G.; Rajagopal, C.; Nagar, P.: Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica). J. Hazard. Mater. 150(3), 604–611 (2008)

    Google Scholar 

  41. Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X.: A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195, 351–364 (2018)

    Google Scholar 

  42. Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A.: Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep. Purif. Technol. 157, 141–161 (2016)

    Google Scholar 

  43. Thostenson, E.T.; Ren, Z.; Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Google Scholar 

  44. Ebrahimi, H.; Afshar Najafi, F.S.; Shahabadi, S.I.S.; Garmabi, H.: A response surface study on microstructure and mechanical properties of poly (lactic acid)/thermoplastic starch/nanoclay nanocomposites. J. Compos. Mater. 50(2), 269–278 (2016)

    Google Scholar 

  45. Shao, D.; Chen, C.; Wang, X.: Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(II). Chem. Eng. J. 185, 144–150 (2012)

    Google Scholar 

  46. Rashid, J.; Azam, R.; Kumar, R.; Ahmad, M.; Rehman, A.; Barakat, M.: Sulfonated polyether sulfone reinforced multiwall carbon nanotubes composite for the removal of lead in wastewater. Appl. Nanosci. 9(8), 1695–1705 (2019)

    Google Scholar 

  47. Tehrani, M.S.; Azar, P.A.; Namin, P.E.; Dehaghi, S.M.: Removal of lead ions from wastewater using functionalized multiwalled carbon nanotubes with tris (2-aminoethyl) amine. J. Environ. Prot. 04(06), 529–536 (2013)

    Google Scholar 

  48. Kosa, S.A.; Al-Zhrani, G.; Salam, M.A.: Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem. Eng. J. 181, 159–168 (2012)

    Google Scholar 

  49. Vuković, G.D.; Marinković, A.D.; Škapin, S.D.; Ristić, M.Đ.; Aleksić, R.; Perić-Grujić, A.A.; Uskoković, P.S.: Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem. Eng. J. 173(3), 855–865 (2011)

    Google Scholar 

  50. Li, Y.-H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B.: Competitive adsorption of Pb2+ , Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14), 2787–2792 (2003)

    Google Scholar 

  51. Chen, C.; Hu, J.; Xu, D.; Tan, X.; Meng, Y.; Wang, X.: Surface complexation modeling of Sr(II) and Eu(III) adsorption onto oxidized multiwall carbon nanotubes. J. Colloid Interface Sci. 323(1), 33–41 (2008)

    Google Scholar 

  52. Rostami, A.; Masoomi, M.; Fayazi, M.J.; Vahdati, M.: Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv. 5(41), 32880–32890 (2015). https://doi.org/10.1039/C5RA04043D

    Article  Google Scholar 

  53. Rostami, A.; Nazockdast, H.; Karimi, M.: Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties. RSC Adv. 6(55), 49747–49759 (2016). https://doi.org/10.1039/C6RA08345E

    Article  Google Scholar 

  54. Rostami, A.; Vahdati, M.; Nazockdast, H.: Unraveling the localization behavior of MWCNTs in binary polymer blends using thermodynamics and viscoelastic approaches. Polym. Compos. 39(7), 2356–2367 (2018)

    Google Scholar 

  55. Speltini, A.; Merli, D.; Profumo, A.: Carbon nanotubes: purification, functionalization and analytical application as stationary phases for choromatografic separation. Sci Acta 5, 3–11 (2011)

    Google Scholar 

  56. AlOmar, M.K.; Alsaadi, M.A.; Hayyan, M.; Akib, S.; Ibrahim, R.K.; Hashim, M.A.: Lead removal from water by choline chloride based deep eutectic solvents functionalized carbon nanotubes. J. Mol. Liq. 222, 883–894 (2016)

    Google Scholar 

  57. Wang, Y.; Shi, L.; Gao, L.; Wei, Q.; Cui, L.; Hu, L.; Yan, L.; Du, B.: The removal of lead ions from aqueous solution by using magnetic hydroxypropyl chitosan/oxidized multiwalled carbon nanotubes composites. J. Colloid Interface Sci. 451, 7–14 (2015)

    Google Scholar 

  58. Yu, X.-Y.; Luo, T.; Zhang, Y.-X.; Jia, Y.; Zhu, B.-J.; Fu, X.-C.; Liu, J.-H.; Huang, X.-J.: Adsorption of lead (II) on O2-plasma-oxidized multiwalled carbon nanotubes: thermodynamics, kinetics, and desorption. ACS Appl. Mater. Interfaces 3(7), 2585–2593 (2011)

    Google Scholar 

  59. Perez-Aguilar, N.V.; Munoz-Sandoval, E.; Diaz-Flores, P.E.; Rangel-Mendez, J.R.: Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: equilibrium and kinetics. J. Nanopart. Res. 12(2), 467–480 (2010)

    Google Scholar 

  60. Atieh, M.A.; Bakather, O.Y.; Al-Tawbini, B.; Bukhari, A.A.; Abuilaiwi, F.A.; Fettouhi, M.B.: Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg. Chem. Appl. 2010, 603978 (2010)

    Google Scholar 

  61. Alizadeh, B.; Ghorbani, M.; Salehi, M.A.: Application of polyrhodanine modified multi-walled carbon nanotubes for high efficiency removal of Pb(II) from aqueous solution. J. Mol. Liq. 220, 142–149 (2016)

    Google Scholar 

  62. Kanthapazham, R.; Ayyavu, C.; Mahendiradas, D.: Removal of Pb2+ , Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrrole nanocomposite. Desalination Water Treat. 57(36), 16871–16885 (2016)

    Google Scholar 

  63. Mittal, A.; Naushad, M.; Sharma, G.; Alothman, Z.; Wabaidur, S.; Alam, M.: Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium. Desalination Water Treat. 57(46), 21863–21869 (2016)

    Google Scholar 

  64. Moyo, M.: Bioremediation of lead (II) from polluted wastewaters employing sulphuric acid treated maize tassel biomass. Am. J. Anal. Chem. 4(12), 689 (2013)

    Google Scholar 

  65. Li, J.; Chen, S.; Sheng, G.; Hu, J.; Tan, X.; Wang, X.: Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes. Chem. Eng. J. 166(2), 551–558 (2011)

    Google Scholar 

  66. Wang, H.; Zhou, A.; Peng, F.; Yu, H.; Chen, L.: Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution. Mater. Sci. Eng., A 466(1–2), 201–206 (2007)

    Google Scholar 

  67. Bhatnagar, A.; Jain, A.K.; Minocha, A.K.; Singh, S.: Removal of lead ions from aqueous solutions by different types of industrial waste materials: equilibrium and kinetic studies. Sep. Sci. Technol. 41(9), 1881–1892 (2006)

    Google Scholar 

  68. Uheida, A.; Iglesias, M.; Fontàs, C.; Zhang, Y.; Muhammed, M.: Adsorption behavior of platinum group metals (Pd, Pt, Rh) on nonylthiourea-coated Fe3O4 nanoparticles. Sep. Sci. Technol. 41(5), 909–923 (2006)

    Google Scholar 

  69. Kamal, M.H.M.A.; Azira, W.M.K.W.K.; Kasmawati, M.; Haslizaidi, Z.; Saime, W.N.W.: Sequestration of toxic Pb(II) ions by chemically treated rubber (Hevea brasiliensis) leaf powder. J. Environ. Sci. 22(2), 248–256 (2010)

    Google Scholar 

  70. Moosa, A.A.; Ridha, A.M.; Hussien, N.A.: Adsorptive removal of lead ions from aqueous solution using biosorbent and carbon nanotubes. Am. J. Mater. Sci. 6(5), 115–124 (2016)

    Google Scholar 

  71. Bulut, E.; Özacar, M.; Şengil, İ.A.: Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design. Microporous Mesoporous Mater. 115(3), 234–246 (2008)

    Google Scholar 

  72. Sadeghalvad, B.; Azadmehr, A.; Hezarkhani, A.: Enhancing adsorptive removal of sulfate by metal layered double hydroxide functionalized Quartz-Albitophire iron ore waste: preparation, characterization and properties. RSC Adv. 6(72), 67630–67642 (2016)

    Google Scholar 

  73. Foo, K.Y.; Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156(1), 2–10 (2010)

    Google Scholar 

  74. Roghani, M.; Nakhli, S.A.A.; Aghajani, M.; Rostami, M.H.; Borghei, S.M.: Adsorption and oxidation study on arsenite removal from aqueous solutions by polyaniline/polyvinyl alcohol composite. J. Water Process Eng. 14, 101–107 (2016)

    Google Scholar 

  75. Sadeghalvad, B.; Moghaddam, B.K.; Hamidi, S.A.: Evaluation of bassanite efficiency as an adsorbent for iron decontamination in aqueous solution. In: World Environmental and Water Resources Congress 2019: Groundwater, Sustainability, Hydro-Climate/Climate Change, and Environmental Engineering, American Society of Civil Engineers Reston, VA, pp. 29–45 (2019)

  76. Sadeghalvad, B.; Khorshidi, N.; Azadmehr, A.; Sillanpää, M.: Sorption, mechanism, and behavior of sulfate on various adsorbents: a critical review. Chemosphere 263, 128064 (2020)

    Google Scholar 

  77. Qiu, H.; Lv, L.; Pan, B.-C.; Zhang, Q.-J.; Zhang, W.-M.; Zhang, Q.-X.: Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci., A 10(5), 716–724 (2009)

    MATH  Google Scholar 

  78. Cui, J.; Wang, W.; You, Y.; Liu, C.; Wang, P.: Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization. Polymer 45(26), 8717–8721 (2004)

    Google Scholar 

  79. Kuan, H.-C.; Ma, C.-C.M.; Chang, W.-P.; Yuen, S.-M.; Wu, H.-H.; Lee, T.-M.: Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos. Sci. Technol. 65(11–12), 1703–1710 (2005)

    Google Scholar 

  80. Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M.: Study on amino-functionalized multiwalled carbon nanotubes. Mater. Sci. Eng., A 464(1–2), 151–156 (2007)

    Google Scholar 

  81. Damian, C.-M.; Pandele, A.M.; Iovu, H.: Ethylenediamine functionalization effect on the thermo-mechanical properties of epoxy nanocomposites reinforced with multiwall carbon nanotubes. Bull 72(3), 163–174 (2010)

    Google Scholar 

  82. Dutta, D.; Dubey, R.; Yadav, J.; Shami, T.; Rao, K.B.: Preparation of spongy microspheres consisting of functionalized multiwalled carbon nanotubes. New Carbon Mater. 26(2), 98–102 (2011)

    Google Scholar 

  83. Gupta, V.K.; Agarwal, S.; Saleh, T.A.: Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 185(1), 17–23 (2011). https://doi.org/10.1016/j.jhazmat.2010.08.053

    Article  Google Scholar 

  84. Slaveykova, V.I.; Wilkinson, K.J.: Effect of pH on Pb biouptake by the freshwater alga Chlorella kesslerii. Environ. Chem. Lett. 1(3), 185–189 (2003)

    Google Scholar 

  85. Zaidi, N.M.; Lim, L.; Usman, A.: Enhancing adsorption of Pb(II) from aqueous solution by NaOH and EDTA modified Artocarpus odoratissimus leaves. J. Environ. Chem. Eng. 6(6), 7172–7184 (2018)

    Google Scholar 

  86. Elkady, M.; Shokry, H.; Hamad, H.: Microwave-assisted synthesis of magnetic hydroxyapatite for removal of heavy metals from groundwater. Chem. Eng. Technol. 41(3), 553–562 (2018)

    Google Scholar 

  87. Yuvaraja, G.; Pang, Y.; Chen, D.-Y.; Kong, L.-J.; Mehmood, S.; Subbaiah, M.V.; Rao, D.S.; Chandramouli, P.; Wen, J.-C.; Reddy, G.M.: Modification of chitosan macromolecule and its mechanism for the removal of Pb(II) ions from aqueous environment. Int. J. Biol. Macromol. 136, 177–188 (2019)

    Google Scholar 

  88. Mall, I.D.; Srivastava, V.C.; Agarwal, N.K.; Mishra, I.M.: Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere 61(4), 492–501 (2005)

    Google Scholar 

  89. Boyd, G.; Adamson, A.; Myers Jr., L.: The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1. J. Am. Chem. Soc. 69(11), 2836–2848 (1947)

    Google Scholar 

  90. Hameed, B.; El-Khaiary, M.: Malachite green adsorption by rattan sawdust: isotherm, kinetic and mechanism modeling. J. Hazard. Mater. 159(2–3), 574–579 (2008)

    Google Scholar 

  91. Sadeghalvad, B.; Azadmehr, A.; Hezarkhani, A.: A new approach to improve sulfate uptake from contaminated aqueous solution: metal layered double hydroxides functionalized metasomatic rock. Sep. Sci. Technol. 54(4), 447–466 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahareh Sadeghalvad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamshidian, M., Sadeghalvad, B., Ghasemi, I. et al. Fabrication of Polyethersulfone/Functionalized MWCNTs Nanocomposite and Investigation its Efficiency as an Adsorbent of Pb(II) Ions. Arab J Sci Eng 46, 6259–6273 (2021). https://doi.org/10.1007/s13369-020-04991-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04991-9

Keywords

  • Polyethersulfone
  • Multiwall carbon nanotube
  • Nanocomposite
  • Adsorption
  • Lead