Qu, X.; Alvarez, P.J.; Li, Q.: Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)
Google Scholar
UNESCO: The United Nations world water development report 2018: nature‐based solutions for water. (2018)
WWAP, U.: World Water Assessment Programme: The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk. In. Paris: UNESCO, (2012)
Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q.: Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 211, 317–331 (2012)
Google Scholar
Arbabi, M.; Hemati, S.; Amiri, M.: Removal of lead ions from industrial wastewater: a review of removal methods. Int. J. Epidemiol. Res. 2, 105–109 (2015)
Google Scholar
Safatian, F.; Doago, Z.; Torabbeigi, M.; Rahmani Shams, H.; Ahadi, N.: Lead ion removal from water by hydroxyapatite nanostructures synthesized from egg sells with microwave irradiation. Appl. Water Sci. 9(4), 108 (2019). https://doi.org/10.1007/s13201-019-0979-8
Article
Google Scholar
Cheema, A.I.; Liu, G.; Yousaf, B.; Abbas, Q.; Zhou, H.: A comprehensive review of biogeochemical distribution and fractionation of lead isotopes for source tracing in distinct interactive environmental compartments. Sci. Total Environ. 719, 135658 (2019)
Google Scholar
O’Connor, D.; Hou, D.; Ye, J.; Zhang, Y.; Ok, Y.S.; Song, Y.; Coulon, F.; Peng, T.; Tian, L.: Lead-based paint remains a major public health concern: a critical review of global production, trade, use, exposure, health risk, and implications. Environ. Int. 121, 85–101 (2018)
Google Scholar
Sadeghalvad, B.; Karimi, H.S.; Hosseinzadegan, H.; Azadmehr, A.R.: A comparative study on the removal of lead from industrial wastewater by adsorption onto raw and modified Iranian Bentonite (from Isfahan area). Desalination Water Treat. 52(34–36), 6440–6452 (2014). https://doi.org/10.1080/19443994.2013.823352
Article
Google Scholar
Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V.K.: Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies. J. Hazard. Mater. 125(1–3), 211–220 (2005)
Google Scholar
Sulaymon, A.H.; Abid, B.A.; Al-Najar, J.A.: Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers. Chem. Eng. J. 155(3), 647–653 (2009). https://doi.org/10.1016/j.cej.2009.08.021
Article
Google Scholar
Sadeghalvad, B.; TorabzadehKashi, M.; Azadmehr, A.R.: A comparative study of Cu(П) and Pb(П) adsorption by Iranian bentonite (Birjand area) in aqueous solutions. Adv. Environ. Technol. 1(2), 93–100 (2015). https://doi.org/10.22104/aet.2015.186
Article
Google Scholar
Li, K.; Wang, X.: Adsorptive removal of Pb(II) by activated carbon prepared from Spartina alterniflora: equilibrium, kinetics and thermodynamics. Biores. Technol. 100(11), 2810–2815 (2009)
Google Scholar
Jokar, M.; Mirghaffari, N.; Soleimani, M.; Jabbari, M.: Preparation and characterization of novel bio ion exchanger from medicinal herb waste (chicory) for the removal of Pb2+ and Cd2+ from aqueous solutions. J. Water Process Eng. 28, 88–99 (2019)
Google Scholar
Berbar, Y.; Hammache, Z.E.; Bensaadi, S.; Soukeur, R.; Amara, M.; Van der Bruggen, B.: Effect of functionalized silica nanoparticles on sulfonated polyethersulfone ion exchange membrane for removal of lead and cadmium ions from aqueous solutions. J. Water Process Eng. 32, 100953 (2019)
Google Scholar
Rasaki, S.A.; Thomas, T.; Yang, M.: Co-precipitation strategy for engineering pH-tolerant and durable ZnO@ MgO nanospheres for efficient, room-temperature, chemisorptive removal of Pb(II) from water. J. Environ. Chem. Eng. 7(2), 103019 (2019)
Google Scholar
Cao, Y.; Xiao, W.; Shen, G.; Ji, G.; Zhang, Y.; Gao, C.; Han, L.: Carbonization and ball milling on the enhancement of Pb(II) adsorption by wheat straw: competitive effects of ion exchange and precipitation. Biores. Technol. 273, 70–76 (2019)
Google Scholar
Zhao, J.; Yang, H.; Nan, C.; Yang, B.; Liu, D.; Xu, B.: Kinetics of Pb evaporation from Pb–Sn liquid alloy in vacuum distillation. Vacuum 141, 10–14 (2017)
Google Scholar
Bassyouni, D.; Mohamed, M.; El-Ashtoukhy, E.-S.; El-Latif, M.A.; Zaatout, A.; Hamad, H.: Fabrication and characterization of electrospun Fe3O4/o-MWCNTs/polyamide 6 hybrid nanofibrous membrane composite as an efficient and recoverable adsorbent for removal of Pb(II). Microchem. J. 149, 103998 (2019)
Google Scholar
RoyChoudhury, P.; Majumdar, S.; Sarkar, S.; Kundu, B.; Sahoo, G.C.: Performance investigation of Pb(II) removal by synthesized hydroxyapatite based ceramic ultrafiltration membrane: bench scale study. Chem. Eng. J. 355, 510–519 (2019)
Google Scholar
Mahmodi, G.; Dangwal, S.; Zarrintaj, P.; Zhu, M.; Mao, Y.; Mcllroy, D.N.; Saeb, M.R.; Vatanpour, V.; Ramsey, J.D.; Kim, S.-J.: NaA zeolite-coated meshes with tunable hydrophilicity for oil–water separation. Sep. Purif. Technol. 240, 116630 (2020)
Google Scholar
Sadeghizadeh, A.; Ebrahimi, F.; Heydari, M.; Tahmasebikohyani, M.; Ebrahimi, F.; Sadeghizadeh, A.: Adsorptive removal of Pb(II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study. J. Environ. Manag. 232, 342–353 (2019)
Google Scholar
Liu, Y.; Gao, Q.; Li, C.; Liu, S.; Xia, K.; Han, B.; Zhou, C.: Effective coating of crosslinked polyethyleneimine on elastic spongy monolith for highly efficient batch and continuous flow adsorption of Pb(II) and acidic red 18. Chem. Eng. J. 391, 123610 (2019)
Google Scholar
Chu, Y.; Khan, M.A.; Wang, F.; Xia, M.; Lei, W.; Zhu, S.: Kinetics and equilibrium isotherms of adsorption of Pb(II) and Cu(II) onto raw and arginine-modified montmorillonite. Adv. Powder Technol. 30(5), 1067–1078 (2019)
Google Scholar
Wang, N.; Jin, R.-N.; Omer, A.; Ouyang, X.-K.: Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal: isotherm, kinetics, and thermodynamic studies. Int. J. Biol. Macromol. 102, 232–240 (2017)
Google Scholar
Hu, D.; Lian, Z.; Xian, H.; Jiang, R.; Wang, N.; Weng, Y.; Peng, X.; Wang, S.; Ouyang, X.K.: Adsorption of Pb(II) from aqueous solution by polyacrylic acid grafted magnetic chitosan nanocomposite. Int. J. Biol. Macromol. 154, 1537–1547 (2019)
Google Scholar
Drweesh, S.A.; Fathy, N.A.; Wahba, M.A.; Hanna, A.A.; Akarish, A.I.; Elzahany, E.A.; El-Sherif, I.Y.; Abou-El-Sherbini, K.S.: Equilibrium, kinetic and thermodynamic studies of Pb(II) adsorption from aqueous solutions on HCl-treated Egyptian kaolin. J. Environ. Chem. Eng. 4(2), 1674–1684 (2016)
Google Scholar
Badawi, M.; Negm, N.; Kana, M.A.; Hefni, H.; Moneem, M.A.: Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: isotherms, kinetics, thermodynamics and process mechanism. Int. J. Biol. Macromol. 99, 465–476 (2017)
Google Scholar
Zarrintaj, P.; Mahmodi, G.; Manouchehri, S.; Mashhadzadeh, A.H.; Khodadadi, M.; Servatan, M.; Ganjali, M.R.; Azambre, B.; Kim, S.J.; Ramsey, J.D.: Zeolite in tissue engineering: opportunities and challenges. MedComm 1(1), 5–34 (2020)
Google Scholar
Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112(10), 5073–5091 (2012)
Google Scholar
Unuabonah, E.; Adebowale, K.; Olu-Owolabi, B.; Yang, L.; Kong, L.: Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93(1–2), 1–9 (2008)
Google Scholar
Wang, Q.; Chang, X.; Li, D.; Hu, Z.; Li, R.; He, Q.: Adsorption of chromium (III), mercury (II) and lead (II) ions onto 4-aminoantipyrine immobilized bentonite. J. Hazard. Mater. 186(2–3), 1076–1081 (2011)
Google Scholar
Bhattacharyya, K.G.; Gupta, S.S.: Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: influence of acid activation of the clays. Colloids Surf., A 277(1–3), 191–200 (2006)
Google Scholar
Eren, E.: Removal of lead ions by Unye (Turkey) bentonite in iron and magnesium oxide-coated forms. J. Hazard. Mater. 165(1–3), 63–70 (2009)
Google Scholar
Rasoulzadeh, H.; Dehghani, M.H.; Mohammadi, A.S.; Karri, R.R.; Nabizadeh, R.; Nazmara, S.; Kim, K.-H.; Sahu, J.: Parametric modelling of Pb(II) adsorption onto chitosan-coated Fe3O4 particles through RSM and DE hybrid evolutionary optimization framework. J. Mol. Liq. 297, 111893 (2019)
Google Scholar
Fan, C.; Li, K.; Li, J.; Ying, D.; Wang, Y.; Jia, J.: Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles. J. Hazard. Mater. 326, 211–220 (2017)
Google Scholar
Hu, L.; Yang, Z.; Cui, L.; Li, Y.; Ngo, H.H.; Wang, Y.; Wei, Q.; Ma, H.; Yan, L.; Du, B.: Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue. Chem. Eng. J. 287, 545–556 (2016)
Google Scholar
Naiya, T.K.; Bhattacharya, A.K.; Mandal, S.; Das, S.K.: The sorption of lead (II) ions on rice husk ash. J. Hazard. Mater. 163(2–3), 1254–1264 (2009)
Google Scholar
Jiang, K.; Sun, T.-H.; Sun, L.-N.; Li, H.-B.: Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline. J. Environ. Sci. 18(6), 1221–1225 (2006)
Google Scholar
Meena, A.K.; Kadirvelu, K.; Mishra, G.; Rajagopal, C.; Nagar, P.: Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica). J. Hazard. Mater. 150(3), 604–611 (2008)
Google Scholar
Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X.: A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195, 351–364 (2018)
Google Scholar
Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A.: Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep. Purif. Technol. 157, 141–161 (2016)
Google Scholar
Thostenson, E.T.; Ren, Z.; Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)
Google Scholar
Ebrahimi, H.; Afshar Najafi, F.S.; Shahabadi, S.I.S.; Garmabi, H.: A response surface study on microstructure and mechanical properties of poly (lactic acid)/thermoplastic starch/nanoclay nanocomposites. J. Compos. Mater. 50(2), 269–278 (2016)
Google Scholar
Shao, D.; Chen, C.; Wang, X.: Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(II). Chem. Eng. J. 185, 144–150 (2012)
Google Scholar
Rashid, J.; Azam, R.; Kumar, R.; Ahmad, M.; Rehman, A.; Barakat, M.: Sulfonated polyether sulfone reinforced multiwall carbon nanotubes composite for the removal of lead in wastewater. Appl. Nanosci. 9(8), 1695–1705 (2019)
Google Scholar
Tehrani, M.S.; Azar, P.A.; Namin, P.E.; Dehaghi, S.M.: Removal of lead ions from wastewater using functionalized multiwalled carbon nanotubes with tris (2-aminoethyl) amine. J. Environ. Prot. 04(06), 529–536 (2013)
Google Scholar
Kosa, S.A.; Al-Zhrani, G.; Salam, M.A.: Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem. Eng. J. 181, 159–168 (2012)
Google Scholar
Vuković, G.D.; Marinković, A.D.; Škapin, S.D.; Ristić, M.Đ.; Aleksić, R.; Perić-Grujić, A.A.; Uskoković, P.S.: Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem. Eng. J. 173(3), 855–865 (2011)
Google Scholar
Li, Y.-H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B.: Competitive adsorption of Pb2+ , Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14), 2787–2792 (2003)
Google Scholar
Chen, C.; Hu, J.; Xu, D.; Tan, X.; Meng, Y.; Wang, X.: Surface complexation modeling of Sr(II) and Eu(III) adsorption onto oxidized multiwall carbon nanotubes. J. Colloid Interface Sci. 323(1), 33–41 (2008)
Google Scholar
Rostami, A.; Masoomi, M.; Fayazi, M.J.; Vahdati, M.: Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv. 5(41), 32880–32890 (2015). https://doi.org/10.1039/C5RA04043D
Article
Google Scholar
Rostami, A.; Nazockdast, H.; Karimi, M.: Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties. RSC Adv. 6(55), 49747–49759 (2016). https://doi.org/10.1039/C6RA08345E
Article
Google Scholar
Rostami, A.; Vahdati, M.; Nazockdast, H.: Unraveling the localization behavior of MWCNTs in binary polymer blends using thermodynamics and viscoelastic approaches. Polym. Compos. 39(7), 2356–2367 (2018)
Google Scholar
Speltini, A.; Merli, D.; Profumo, A.: Carbon nanotubes: purification, functionalization and analytical application as stationary phases for choromatografic separation. Sci Acta 5, 3–11 (2011)
Google Scholar
AlOmar, M.K.; Alsaadi, M.A.; Hayyan, M.; Akib, S.; Ibrahim, R.K.; Hashim, M.A.: Lead removal from water by choline chloride based deep eutectic solvents functionalized carbon nanotubes. J. Mol. Liq. 222, 883–894 (2016)
Google Scholar
Wang, Y.; Shi, L.; Gao, L.; Wei, Q.; Cui, L.; Hu, L.; Yan, L.; Du, B.: The removal of lead ions from aqueous solution by using magnetic hydroxypropyl chitosan/oxidized multiwalled carbon nanotubes composites. J. Colloid Interface Sci. 451, 7–14 (2015)
Google Scholar
Yu, X.-Y.; Luo, T.; Zhang, Y.-X.; Jia, Y.; Zhu, B.-J.; Fu, X.-C.; Liu, J.-H.; Huang, X.-J.: Adsorption of lead (II) on O2-plasma-oxidized multiwalled carbon nanotubes: thermodynamics, kinetics, and desorption. ACS Appl. Mater. Interfaces 3(7), 2585–2593 (2011)
Google Scholar
Perez-Aguilar, N.V.; Munoz-Sandoval, E.; Diaz-Flores, P.E.; Rangel-Mendez, J.R.: Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: equilibrium and kinetics. J. Nanopart. Res. 12(2), 467–480 (2010)
Google Scholar
Atieh, M.A.; Bakather, O.Y.; Al-Tawbini, B.; Bukhari, A.A.; Abuilaiwi, F.A.; Fettouhi, M.B.: Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg. Chem. Appl. 2010, 603978 (2010)
Google Scholar
Alizadeh, B.; Ghorbani, M.; Salehi, M.A.: Application of polyrhodanine modified multi-walled carbon nanotubes for high efficiency removal of Pb(II) from aqueous solution. J. Mol. Liq. 220, 142–149 (2016)
Google Scholar
Kanthapazham, R.; Ayyavu, C.; Mahendiradas, D.: Removal of Pb2+ , Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrrole nanocomposite. Desalination Water Treat. 57(36), 16871–16885 (2016)
Google Scholar
Mittal, A.; Naushad, M.; Sharma, G.; Alothman, Z.; Wabaidur, S.; Alam, M.: Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium. Desalination Water Treat. 57(46), 21863–21869 (2016)
Google Scholar
Moyo, M.: Bioremediation of lead (II) from polluted wastewaters employing sulphuric acid treated maize tassel biomass. Am. J. Anal. Chem. 4(12), 689 (2013)
Google Scholar
Li, J.; Chen, S.; Sheng, G.; Hu, J.; Tan, X.; Wang, X.: Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes. Chem. Eng. J. 166(2), 551–558 (2011)
Google Scholar
Wang, H.; Zhou, A.; Peng, F.; Yu, H.; Chen, L.: Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution. Mater. Sci. Eng., A 466(1–2), 201–206 (2007)
Google Scholar
Bhatnagar, A.; Jain, A.K.; Minocha, A.K.; Singh, S.: Removal of lead ions from aqueous solutions by different types of industrial waste materials: equilibrium and kinetic studies. Sep. Sci. Technol. 41(9), 1881–1892 (2006)
Google Scholar
Uheida, A.; Iglesias, M.; Fontàs, C.; Zhang, Y.; Muhammed, M.: Adsorption behavior of platinum group metals (Pd, Pt, Rh) on nonylthiourea-coated Fe3O4 nanoparticles. Sep. Sci. Technol. 41(5), 909–923 (2006)
Google Scholar
Kamal, M.H.M.A.; Azira, W.M.K.W.K.; Kasmawati, M.; Haslizaidi, Z.; Saime, W.N.W.: Sequestration of toxic Pb(II) ions by chemically treated rubber (Hevea brasiliensis) leaf powder. J. Environ. Sci. 22(2), 248–256 (2010)
Google Scholar
Moosa, A.A.; Ridha, A.M.; Hussien, N.A.: Adsorptive removal of lead ions from aqueous solution using biosorbent and carbon nanotubes. Am. J. Mater. Sci. 6(5), 115–124 (2016)
Google Scholar
Bulut, E.; Özacar, M.; Şengil, İ.A.: Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design. Microporous Mesoporous Mater. 115(3), 234–246 (2008)
Google Scholar
Sadeghalvad, B.; Azadmehr, A.; Hezarkhani, A.: Enhancing adsorptive removal of sulfate by metal layered double hydroxide functionalized Quartz-Albitophire iron ore waste: preparation, characterization and properties. RSC Adv. 6(72), 67630–67642 (2016)
Google Scholar
Foo, K.Y.; Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156(1), 2–10 (2010)
Google Scholar
Roghani, M.; Nakhli, S.A.A.; Aghajani, M.; Rostami, M.H.; Borghei, S.M.: Adsorption and oxidation study on arsenite removal from aqueous solutions by polyaniline/polyvinyl alcohol composite. J. Water Process Eng. 14, 101–107 (2016)
Google Scholar
Sadeghalvad, B.; Moghaddam, B.K.; Hamidi, S.A.: Evaluation of bassanite efficiency as an adsorbent for iron decontamination in aqueous solution. In: World Environmental and Water Resources Congress 2019: Groundwater, Sustainability, Hydro-Climate/Climate Change, and Environmental Engineering, American Society of Civil Engineers Reston, VA, pp. 29–45 (2019)
Sadeghalvad, B.; Khorshidi, N.; Azadmehr, A.; Sillanpää, M.: Sorption, mechanism, and behavior of sulfate on various adsorbents: a critical review. Chemosphere 263, 128064 (2020)
Google Scholar
Qiu, H.; Lv, L.; Pan, B.-C.; Zhang, Q.-J.; Zhang, W.-M.; Zhang, Q.-X.: Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci., A 10(5), 716–724 (2009)
MATH
Google Scholar
Cui, J.; Wang, W.; You, Y.; Liu, C.; Wang, P.: Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization. Polymer 45(26), 8717–8721 (2004)
Google Scholar
Kuan, H.-C.; Ma, C.-C.M.; Chang, W.-P.; Yuen, S.-M.; Wu, H.-H.; Lee, T.-M.: Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos. Sci. Technol. 65(11–12), 1703–1710 (2005)
Google Scholar
Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M.: Study on amino-functionalized multiwalled carbon nanotubes. Mater. Sci. Eng., A 464(1–2), 151–156 (2007)
Google Scholar
Damian, C.-M.; Pandele, A.M.; Iovu, H.: Ethylenediamine functionalization effect on the thermo-mechanical properties of epoxy nanocomposites reinforced with multiwall carbon nanotubes. Bull 72(3), 163–174 (2010)
Google Scholar
Dutta, D.; Dubey, R.; Yadav, J.; Shami, T.; Rao, K.B.: Preparation of spongy microspheres consisting of functionalized multiwalled carbon nanotubes. New Carbon Mater. 26(2), 98–102 (2011)
Google Scholar
Gupta, V.K.; Agarwal, S.; Saleh, T.A.: Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 185(1), 17–23 (2011). https://doi.org/10.1016/j.jhazmat.2010.08.053
Article
Google Scholar
Slaveykova, V.I.; Wilkinson, K.J.: Effect of pH on Pb biouptake by the freshwater alga Chlorella kesslerii. Environ. Chem. Lett. 1(3), 185–189 (2003)
Google Scholar
Zaidi, N.M.; Lim, L.; Usman, A.: Enhancing adsorption of Pb(II) from aqueous solution by NaOH and EDTA modified Artocarpus odoratissimus leaves. J. Environ. Chem. Eng. 6(6), 7172–7184 (2018)
Google Scholar
Elkady, M.; Shokry, H.; Hamad, H.: Microwave-assisted synthesis of magnetic hydroxyapatite for removal of heavy metals from groundwater. Chem. Eng. Technol. 41(3), 553–562 (2018)
Google Scholar
Yuvaraja, G.; Pang, Y.; Chen, D.-Y.; Kong, L.-J.; Mehmood, S.; Subbaiah, M.V.; Rao, D.S.; Chandramouli, P.; Wen, J.-C.; Reddy, G.M.: Modification of chitosan macromolecule and its mechanism for the removal of Pb(II) ions from aqueous environment. Int. J. Biol. Macromol. 136, 177–188 (2019)
Google Scholar
Mall, I.D.; Srivastava, V.C.; Agarwal, N.K.; Mishra, I.M.: Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere 61(4), 492–501 (2005)
Google Scholar
Boyd, G.; Adamson, A.; Myers Jr., L.: The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1. J. Am. Chem. Soc. 69(11), 2836–2848 (1947)
Google Scholar
Hameed, B.; El-Khaiary, M.: Malachite green adsorption by rattan sawdust: isotherm, kinetic and mechanism modeling. J. Hazard. Mater. 159(2–3), 574–579 (2008)
Google Scholar
Sadeghalvad, B.; Azadmehr, A.; Hezarkhani, A.: A new approach to improve sulfate uptake from contaminated aqueous solution: metal layered double hydroxides functionalized metasomatic rock. Sep. Sci. Technol. 54(4), 447–466 (2019)
Google Scholar