Skip to main content
Log in

Multi-objective Optimization of Ms58 Brass Machining Operation by Multi-axis CNC Lathe

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Brass materials are widely used in many fields of machinery, especially plumbing applications. Parts produced from brass are processed in lathes or milling machines during the manufacturing phase. In this study, 6-corner pieces were produced by machining the MS58 brass alloy on the C-axis lathe with an end mill. As machining parameters, tool diameter, feedrate and rotation speed were selected. The effects of these parameters on average surface roughness (Ra), cutting time (t) and dimensional deviation (dev) were determined by the surface response method. Regression equations were created separately for surface roughness, cutting time and dimensional deviation. Later, parameter levels that optimize all three dependent variables together were obtained by grey relationship analysis. It was determined that the most effective parameter on surface roughness and dimensional deviation is the tool diameter. The most effective parameter on cutting time was found to be feedrate. The best combination of machining parameters was 10 mm tool diameter, 150 mm/min feedrate and 1000 rev/min rotation speed. The selection of parameters depends on the requirements based on better surface roughness, minimum cutting time, minimum dimensional deviation. Parameter levels that optimize surface roughness only are 10 mm tool diameter, 50 mm/min feedrate and 1000 rev/min rotation speed. Parameter levels that optimize cutting time only are 8 mm tool diameter, 143 mm/min feedrate and 1525 rev/min rotation speed. Parameter levels that optimize cutting time only: 10.31 mm tool diameter, 50 mm/min feedrate and 1000 rev/min rotation speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vijay Kumar, M.; Kiran Kumar, B.J.; Rudresha, N.: Optimization of machining parameters in CNC turning of stainless steel (EN19) by TAGUCHI’S orthogonal array experiments. Mater. Today Proc. 5, 11395–11407 (2018). https://doi.org/10.1016/j.matpr.2018.02.107

    Article  Google Scholar 

  2. Yan, H.; Qian, G.; Hu, Q.: Development of flow stress of AISI H13 die steel in hard machining. J. Wuhan Univ. Technol. Mater. Sci. Ed. 22, 187–190 (2007). https://doi.org/10.1007/s11595-005-2187-7

    Article  Google Scholar 

  3. Prabha, K.A.; Prasad, B.S.: Machining of steam turbine blade on 5-axis CNC machine. Mater. Today Proc. 18, 3001–3007 (2019). https://doi.org/10.1016/j.matpr.2019.07.171

    Article  Google Scholar 

  4. Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.: Optimization of process parameters in CNC turning of aluminium alloy using hybrid RSM cum TLBO approach. IOP Conf. Ser. Mater. Sci. Eng. (2016). https://doi.org/10.1088/1757-899X/149/1/012039

    Article  Google Scholar 

  5. Kumar, H.; Abbas, M.; Mohammad, A.; Jafri, H.Z.: Optimization of cutting parameters in CNC turning. Int. J. Eng. Res. Appl. 3, 331–334 (2013)

    Google Scholar 

  6. García-Plaza, E.; Núñez, P.J.; Salgado, D.R.; Cambero, I.; Herrera Olivenza, J.M.; García Sanz-Calcedo, J.: Surface finish monitoring in taper turning CNC using artificial neural network and multiple regression methods. Procedia Eng. 63, 599–607 (2013). https://doi.org/10.1016/j.proeng.2013.08.245

    Article  Google Scholar 

  7. Çiftçi, İ.; Gökçe, H.: Optimisation of cutting tool and cutting parameters in machining of molybdenum alloys through the Taguchi method. J. Fac. Eng. Arch. Gazi Univ. 34, 201–213 (2019). https://doi.org/10.17341/gazimmfd.416482

    Article  Google Scholar 

  8. Zoghipour, N.; Tascioglu, E.; Atay, G.; Kaynak, Y.: Machining-induced surface integrity of holes drilled in lead-free brass alloy. Procedia CIRP 87, 148–152 (2020). https://doi.org/10.1016/j.procir.2020.02.102

    Article  Google Scholar 

  9. Dehen, S.; Segebade, E.; Gerstenmeyer, M.; Zanger, F.; Schulze, V.: Milling parameter and tool wear dependent surface quality in micro-milling of brass. Procedia CIRP 87, 95–100 (2020). https://doi.org/10.1016/j.procir.2020.02.024

    Article  Google Scholar 

  10. Gadekula, R.K.; Potta, M.; Kamisetty, D.; Yarava, U.K.; Anand, P.; Dondapati, R.S.: Investigation on parametric process optimization of HCHCR in CNC turning machine using Taguchi technique. Mater. Today Proc. 5, 28446–28453 (2018). https://doi.org/10.1016/j.matpr.2018.10.131

    Article  Google Scholar 

  11. Kuntoğlu, M.; Sağlam, H.: Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement 140, 427–436 (2019). https://doi.org/10.1016/j.measurement.2019.04.022

    Article  Google Scholar 

  12. Kilickap, E.; Yardimeden, A.; Çelik, Y.H.: Mathematical modelling and optimization of cutting force, tool wear and surface roughness by using artificial neural network and response surface methodology in milling of Ti-6242S. Appl. Sci. (2017). https://doi.org/10.3390/app7101064

    Article  Google Scholar 

  13. Saini, A.; Chauhan, P.; Pabla, B.; Dhami, S.: Multi-process parameter optimization in face milling of Ti6Al4V alloy using response surface methodology. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232, 1590–1602 (2016). https://doi.org/10.1177/0954405416673682

    Article  Google Scholar 

  14. Fountas, N.; Koutsomichalis, A.; Kechagias, J.D.; Vaxevanidis, N.M.: Multi-response optimization of CuZn39Pb3 brass alloy turning by implementing Grey Wolf algorithm. Frattura Ed Integrita Strutturale 13, 584–594 (2019). https://doi.org/10.3221/IGF-ESIS.50.49

    Article  Google Scholar 

  15. Jing, X.; Li, H.; Wang, J.; Yuan, Y.; Zhang, D.; Kwok, N.; et al.: An investigation of surface roughness in micro-end-milling of metals. Aust. J. Mech. Eng. 15, 166–174 (2017). https://doi.org/10.1080/14484846.2016.1211472

    Article  Google Scholar 

  16. Savas, V.; Ozay, C.: The optimization of the surface roughness in the process of tangential turn-milling using genetic algorithm. Int. J. Adv. Manuf. Technol. 37, 335–340 (2008). https://doi.org/10.1007/s00170-007-0984-1

    Article  Google Scholar 

  17. Cetin, O.; Vedat, S.: The optimization of cutting parameters for surface roughness in tangential turn-milling using Taguchi method. Adv. Nat. Appl. Sci. 6, 866–874 (2012). https://doi.org/10.4028/www.scientific.net/MSF.723.196

    Article  Google Scholar 

  18. Altintas, Y.; Yang, J.; Kilic, Z.M.: Virtual prediction and constraint of contour errors induced by cutting force disturbances on multi-axis CNC machine tools. CIRP Ann. 68, 377–380 (2019). https://doi.org/10.1016/j.cirp.2019.04.019

    Article  Google Scholar 

  19. Bahloul, R.; Arfa, H.; Belhadjsalah, H.: A study on optimal design of process parameters in single point incremental forming of sheet metal by combining Box–Behnken design of experiments, response surface methods and genetic algorithms. Int. J. Adv. Manuf. Technol. 74, 163–185 (2014). https://doi.org/10.1007/s00170-014-5975-4

    Article  Google Scholar 

  20. Bandyopadhyay, K.; Panda, S.K.; Saha, P.: Optimization of fiber laser welding of DP980 steels using RSM to improve weld properties for formability. J. Mater. Eng. Perform. 25, 1–16 (2016). https://doi.org/10.1007/s11665-016-2071-y

    Article  Google Scholar 

  21. Chen, W.; Kong, F.; Wang, B.; Li, Y.: Application of grey relational analysis and extreme learning machine method for predicting silicon content of molten iron in blast furnace. Ironmak. Steelmak. 46, 974–979 (2019). https://doi.org/10.1080/03019233.2018.1470146

    Article  Google Scholar 

  22. Kumar, M.; Singh, H.: Multi response optimization in wire electrical discharge machining of Inconel X-750 using Taguchi’s technique and grey relational analysis. Cogent Eng. (2016). https://doi.org/10.1080/23311916.2016.1266123

    Article  Google Scholar 

  23. Şen, N.; Taşdemir, V.; Seçgin, Ö.: Investigation of formability of HC380LA material via the TPIF-RL incremental forming method. Ironmak. Steelmak. (2020). https://doi.org/10.1080/03019233.2019.1711351

    Article  Google Scholar 

  24. Korucuk, S.: Soğuk Zincir Taşımacılığı Yapan İşletmelerde 3PL Firma Seçimi: İstanbul Örneği. Iğd Üniv Sos Bil Der. 16, 341–366 (2018)

    Google Scholar 

  25. Motorcu, A.R.: The optimization of machining parameters using the Taguchi method for surface roughness of AISI 8660 hardened alloy steel. J. Mech. Eng. 56, 391–401 (2010)

    Google Scholar 

  26. Zhang, S.J.; To, S.; Wang, S.J.; Zhu, Z.W.: A review of surface roughness generation in ultra-precision machining. Int. J. Mach. Tools Manuf. 91, 76–95 (2015). https://doi.org/10.1016/j.ijmachtools.2015.02.001

    Article  Google Scholar 

  27. Vishnu Vardhan, M.; Sankaraiah, G.; Yohan, M.; Jeevan Rao, H.: Optimization of parameters in CNC milling of P20 steel using response surface methodology and Taguchi method. Mater. Today Proc. 4, 9163–9169 (2017). https://doi.org/10.1016/j.matpr.2017.07.273

    Article  Google Scholar 

  28. Nam, J.; Kim, J.W.; Kim, J.S.; Lee, J.; Lee, S.W.: Parametric analysis and optimization of nanofluid minimum quantity lubrication micro-drilling process for titanium alloy (Ti–6Al–4V) using response surface methodology and desirability function. Procedia Manuf. 26, 403–414 (2018). https://doi.org/10.1016/j.promfg.2018.07.048

    Article  Google Scholar 

  29. Dogrusadik, A.; Kentli, A.: Comparative assessment of support plates’ influences on delamination damage in micro-drilling of CFRP laminates. Compos. Struct. 173, 156–167 (2017). https://doi.org/10.1016/j.compstruct.2017.04.031

    Article  Google Scholar 

  30. Parashar, V.; Purohit, R.: Investigation of the effects of the machining parameters on material removal rate using Taguchi method in end milling of steel grade EN19. Mater. Today Proc. 4, 336–341 (2017). https://doi.org/10.1016/j.matpr.2017.01.030

    Article  Google Scholar 

  31. Nouioua, M.; Yallese, M.A.; Khettabi, R.; Belhadi, S.; Bouhalais, M.L.; Girardin, F.: Investigation of the performance of the MQL, dry, and wet turning by response surface methodology (RSM) and artificial neural network (ANN). Int. J. Adv. Manuf. Technol. 93, 2485–2504 (2017). https://doi.org/10.1007/s00170-017-0589-2

    Article  Google Scholar 

  32. Medina-Sánchez, G.; Torres-Jimenez, E.; Lopez-Garcia, R.; Dorado-Vicente, R.: Cutting time in pocket machining for different tool-path approximation segments. Procedia Manuf. 13, 59–66 (2017). https://doi.org/10.1016/j.promfg.2017.09.009

    Article  Google Scholar 

  33. Kavimani, V.; Prakash, K.S.; Thankachan, T.: Multi-objective optimization in WEDM process of graphene—SiC-magnesium composite through hybrid techniques. Measurement 145, 335–349 (2019). https://doi.org/10.1016/j.measurement.2019.04.076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Seçgin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seçgin, Ö. Multi-objective Optimization of Ms58 Brass Machining Operation by Multi-axis CNC Lathe. Arab J Sci Eng 46, 2133–2145 (2021). https://doi.org/10.1007/s13369-020-04984-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04984-8

Keywords

Navigation