Skip to main content

Solving the Cold-Start Problem in Recommender Systems Using Contextual Information in Arabic from Calendars

Abstract

Cold-start problem, which is the inability to make accurate recommendations due to the unavailability of enough information about user’s preferences, is one of the challenges of recommender systems. Contextual information was widely used to solve this problem in English language. However, Arabic language is the sixth-most-spoken language in the world, Arabic text in calendars has not been used to find user’s interests in recommender systems. Our work utilizes events from users’ calendars that are written in Arabic. We first build a multi-class text classifier to classify calendar events. The classifier is trained on Wikipedia data and validated using 10-fold cross-validation. Our classifier reached an accuracy of 76.72%. We investigated the reasons for our results and we identified factors that have high impacts on them. These factors including, but not limited to, English events written in Arabic letters and Arabic names. Finally, we highlighted some research directions to tackle the existing limitations in order to improve the presented work.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. https://pypi.org/project/Wikipedia-API/.

  2. https://www.nltk.org/.

  3. FastText library: https://pypi.org/project/fasttext/.

  4. https://www.cronofy.com/.

References

  1. Adomavicius, G.; Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 6, 734–749 (2005)

    Article  Google Scholar 

  2. Lika, B.; Kolomvatsos, K.; Hadjiefthymiades, S.: Facing the cold start problem in recommender systems. Expert Syst. Appl. 41(4), 2065–2073 (2014)

    Article  Google Scholar 

  3. Rubens, N.; Kaplan, D.; Sugiyama, M.: Active learning in recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_23

    Chapter  Google Scholar 

  4. Elahi, M.; Ricci, F.; Rubens, N.: Active learning in collaborative filtering recommender systems. In: International Conference on Electronic Commerce and Web Technologies. Springer, Berlin, pp 113–124(2014)

  5. Fernández-Tobías, I.; Braunhofer, M.; Elahi, M.; Ricci, F.; Cantador, I.: Alleviating the new user problem in collaborative filtering by exploiting personality information. User Model. User-Adap. Inter. 26(2–3), 221–255 (2016)

    Article  Google Scholar 

  6. Camacho, L.A.G.; Alves-Souza, S.N.: Social network data to alleviate cold-start in recommender system: a systematic review. Inf. Process. Manag. 54(4), 529–544 (2018)

    Article  Google Scholar 

  7. Viktoratos, I.; Tsadiras, A.; Bassiliades, N.: Combining community-based knowledge with association rule mining to alleviate the cold start problem in context-aware recommender systems. Expert Syst. Appl. 101, 78–90 (2018)

    Article  Google Scholar 

  8. Abdulkarem, H.F.; Abozaid, G.Y.; Soliman, M.I.: Context-aware recommender system frameworks, techniques, and applications: a survey. In: 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), pp. 180–185. IEEE, New York (2019)

  9. Sassi, I.B.; Mellouli, S.; Yahia, S.B.: Context-aware recommender systems in mobile environment: on the road of future research. Inf. Syst. 72, 27–61 (2017)

    Article  Google Scholar 

  10. Idera, T.; Nakamura, K.; Oyanagi, S.: Extraction of user context for recommendation from access history. In: Lecture Notes in Engineering and Computer Science: Proceedings of the International Multi-conference of Engineers and Computer Scientists (2015)

  11. Bouneffouf, D.; Bouzeghoub, A.; Gançarski, A.L.: Following the user’s interests in mobile context-aware recommender systems: the hybrid-e-greedy algorithm. In: 2012 26th International Conference on Advanced Information Networking and Applications Workshops, pp. 657–662. IEEE, New York (2012)

  12. Bouneffouf, D.; Bouzeghoub, A.; Gançarski, A.L.: A contextual-bandit algorithm for mobile context-aware recommender system. In: International Conference on Neural Information Processing, pp. 324–331. Springer, Berlin (2012)

  13. Eberhard, D.M.; Simons, G.F.; Fennig, C.D.: Ethnologue: languages of the world. In: Ethnologue: Languages of the World, 22nd edn. SIL International, Dallas (2019)

  14. Suppa, P.; Zimeo, E.: A context-aware mashup recommender based on social networks data mining and user activities. In: 2016 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 1–6. IEEE, New York (2016)

  15. Tang, J.; Hu, X.; Liu, H.: Social recommendation: a review. Soc. Netw. Anal. Min. 3(4), 1113–1133 (2013)

    Article  Google Scholar 

  16. Yu, W.; Li, S.: Recommender systems based on multiple social networks correlation. Fut. Gener. Comput. Syst. 87, 312–327 (2018)

    Article  Google Scholar 

  17. Raigoza, J.; Karande, V.: A study and implementation of a movie recommendation system in a cloud-based environment. Int. J. Grid High Perform. Comput. (IJGHPC) 9(1), 25–36 (2017)

    Article  Google Scholar 

  18. Raza, S.; Ding, C.: Progress in context-aware recommender systems—an overview. Comput. Sci. Rev. 31, 84–97 (2019)

    MathSciNet  Article  Google Scholar 

  19. Son, J.-W.; Kim, A.; Park, S.-B. et al.: A location-based news article recommendation with explicit localized semantic analysis. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 293–302. ACM, New York (2013)

  20. Fang, B.; Liao, S.; Xu, K.; Cheng, H.; Zhu, C.; Chen, H.: A novel mobile recommender system for indoor shopping. Expert Syst. Appl. 39(15), 11992–12000 (2012)

    Article  Google Scholar 

  21. Kuo, M.-H.; Chen, L.-C.; Liang, C.-W.: Building and evaluating a location-based service recommendation system with a preference adjustment mechanism. Expert Syst. Appl. 36(2), 3543–3554 (2009)

    Article  Google Scholar 

  22. Ravi, L.; Subramaniyaswamy, V.; Vijayakumar, V.; Chen, S.; Karmel, A.; Devarajan, M.: Hybrid location-based recommender system for mobility and travel planning. Mobile Netw. Appl. 24, 1–14 (2019)

    Article  Google Scholar 

  23. Otebolaku, A.M.; Andrade, M.T.: Context-aware media recommendations for smart devices. J. Ambient Intell. Humaniz. Comput. 6(1), 13–36 (2015)

    Article  Google Scholar 

  24. Hawalah, A.; Fasli, M.: Utilizing contextual ontological user profiles for personalized recommendations. Expert Syst. Appl. 41(10), 4777–4797 (2014)

    Article  Google Scholar 

  25. Biancalana, C.; Gasparetti, F.; Micarelli, A.; Sansonetti, G.: An approach to social recommendation for context-aware mobile services. ACM Trans. Intell. Syst. Technol. (TIST) 4(1), 10 (2013)

    Google Scholar 

  26. Colombo-Mendoza, L.O.; Valencia-García, R.; Rodríguez-González, A.; Alor-Hernández, G.; Samper-Zapater, J.J.: Recommetz: a context-aware knowledge-based mobile recommender system for movie showtimes. Expert Syst. Appl. 42(3), 1202–1222 (2015)

    Article  Google Scholar 

  27. Cheng, Z.; Shen, J.: Just-for-me: an adaptive personalization system for location-aware social music recommendation. In: Proceedings of International Conference on Multimedia Retrieval, p. 185. ACM, New York(2014)

  28. Ojagh, S.; Malek, M.R.; Saeedi, S.; Liang, S.: A location-based orientation-aware recommender system using IoT smart devices and social networks. Fut. Gener. Comput. Syst. (2020). https://doi.org/10.1016/j.future.2020.02.041

    Article  Google Scholar 

  29. Felfernig, A.; Polat-Erdeniz, S.; Uran, C.; Reiterer, S.; Atas, M.; Tran, T.N.T.; Azzoni, P.; Kiraly, C.; Dolui, K.: An overview of recommender systems in the internet of things. J. Intell. Inf. Syst. 52(2), 285–309 (2019)

    Article  Google Scholar 

  30. Bouazza, H.; Zohra, L.F.; Said, B.: Comparative study of the internet of things recommender system. In: International Conference on Computing, pp. 278–285. Springer, Berlin (2019)

  31. Zhao, Q.; Bennett, P.N.; Fourney, A.; Thompson, A.L.; Williams, S.; Troy, A.D.; Dumais, S.T.: Calendar-aware proactive email recommendation. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 655–664. ACM, New York (2018)

  32. Alghamdi, N.; Assiri, F.: A comparison of fastText implementations using Arabic text classification. In: Proceedings of SAI Intelligent Systems Conference, pp. 306–311. Springer, Berlin (2019)

  33. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J.: Efficient estimation of word representations in vector space. Preprint arXiv:1301.3781 (2013).

  34. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T.: Enriching word vectors with subword information. Preprint arXiv:1607.04606 (2016)

  35. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Raschka, S.: Python Machine Learning. Packt Publishing, New York (2015)

    Google Scholar 

  37. Rosenthal, S.; Farra, N.; Nakov, P.: Semeval-2017 task 4: sentiment analysis in Twitter. Preprint arXiv:1912.00741 (2019)

  38. Dahou, A.; Xiong, S.; Zhou, J.; Haddoud, M.H.; Duan, P.: Word embeddings and convolutional neural network for Arabic sentiment classification. In: Proceedings of Coling 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2418–2427 (2016)

  39. Refaee, E.; Rieser, V.: Benchmarking machine translated sentiment analysis for Arabic tweets. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pp. 71–78 (2015)

  40. Nakov, P.; Ritter, A.; Rosenthal, S.; Sebastiani, F.; Stoyanov, V.: Semeval-2016 task 4: Sentiment analysis in Twitter. Preprint arXiv:1912.01973 (2019)

  41. Yang, H.; Cui, H.; Tang, H.: A text classification algorithm based on feature weighting. AIP Conf. Proc. 1864, 020026 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuha Alghamdi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alghamdi, N., Assiri, F. Solving the Cold-Start Problem in Recommender Systems Using Contextual Information in Arabic from Calendars. Arab J Sci Eng 45, 10939–10947 (2020). https://doi.org/10.1007/s13369-020-04890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04890-z

Keywords

  • Recommender systems
  • Cold-start
  • Word embeddings
  • FastText
  • Multi-class classification
  • Arabic text classification