Skip to main content

Advertisement

Log in

Power and Temperature-Aware Workflow Scheduling Considering Deadline Constraint in Cloud

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Cloud data centers consume substantial amount of energy to meet up the growing demand of cloud resources. Recently, increase in enormous data processing and computing in data centers has resulted rigorous energy consumption that leads to large amount of carbon footprint and creates the harmful impact on the environment. The two main components of a data center that are contributing to energy consumption: computing energy and cooling energy. In this paper, we have considered the problem of scheduling parallel applications consisting of dependent tasks having precedence constraints in heterogeneous cloud computing environment. Recently many heuristics have been developed to optimize the execution time, i.e., makespan only without giving much deliberation to the computing energy and cooling energy needed for cooling the data center while performing the tasks. Reducing energy consumption leads to reduction in operating costs. Therefore, we proposed an algorithm namely power and temperature-aware workflow-scheduling (PATA-WSD) algorithm with user-specified SLA constraint (deadline) to optimize computing as well as cooling energy. The proposed algorithm minimizes the energy consumption (computing + cooling) of executing tasks along with satisfying deadline constraints with the use of dynamic voltage and frequency scaling technique. The simulation results are obtained using random task graphs and real-time scientific workflows such as Cybershake and Montage. Results demonstrated that the proposed algorithm optimizes the computing and cooling energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chaurasia, A.; Thakur, S.: Towards Green Cloud Computing: Impact of Carbon Footprint on Environment, pp. 209–213 (2016)

  2. Jing, S.Y.; Ali, S.; She, K.; Zhong, Y.: State-of-the-art research study for green cloud computing. J. Supercomput. 65(1), 445–468 (2013)

    Article  Google Scholar 

  3. Danilak, R.: Council post: why energy is a big and rapidly growing problem for data centers. Forbes Technol. Counc. 15, 12–17 (2015)

    Google Scholar 

  4. Liu, H.; et al.: Thermal-aware and DVFS-enabled big data task scheduling for data centers. IEEE Trans. Big Data 4(2), 177–190 (2017)

    Article  Google Scholar 

  5. Pouwelse, J.; Langendoen, K.; Sips, H.: Energy priority scheduling for variable voltage processors. In: Proceedings of the International Symposium on Low Power Electronics and Design, Digest of Technical Papers, pp. 28–33 (2001)

  6. Arroba, P.; Moya, J.M.; Ayala, J.L.; Buyya, R.: Dynamic voltage and frequency scaling-aware dynamic consolidation of virtual machines for energy efficient cloud data centers. Concurr. Comput. 29(10), 4067 (2017)

    Article  Google Scholar 

  7. Zhu, D.; Melhem, R.; Childers, B.R.: Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems. IEEE Trans. Parallel Distrib. Syst. 14(7), 686–700 (2003)

    Article  Google Scholar 

  8. Usman, S.; Bilal, K.; Ghani, N.; Khan, S.U.; Yang, L.T.: Thermal-aware, power efficient, and makespan realized Pareto front for cloud scheduler. In: 40th Annual IEEE Conference on Local Computer Networks, pp. 769–775 (2015)

  9. Topcuoglu, H.; Hariri, S.; Society, I.C.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)

    Article  Google Scholar 

  10. Huang, Q.; Su, S.; Li, J.; Xu, P.; Shuang, K.; Huang, X.: Enhanced energy-efficient scheduling for parallel applications in cloud. In: Proceedings of the 12th IEEE/ACM International Symposium on Cluster Cloud Grid Computing CCGrid 2012, pp. 781–786 (2012)

  11. Tang, Z.; Qi, L.; Cheng, Z.; Li, K.K.; Khan, S.U.; Li, K.K.: An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment. J. Grid Comput. 14(1), 55–74 (2016)

    Article  Google Scholar 

  12. Cao, T.; Huang, W.; He, Y.; Kondo, M.: Cooling-aware job scheduling and node allocation for over provisioned HPC systems. In: Proceedings of the 2017 IEEE 31st International Parallel Distributed Processing Symposium IPDPS 2017, pp. 728–737 (2017)

  13. Kwok, Y.-K.K.; Ahmad, I.; Ahmad, L.: Dynamic critical-path scheduling: an effective technique for allocating task graphs to multiprocessors. IEEE Trans. Parallel Distrib. Syst. 7(5), 506–521 (1996)

    Article  Google Scholar 

  14. Zhang, L.; Chen, Y.; Sun, R.; Yang, B.: A task scheduling algorithm based on PSO for grid computing. Int. J. Comput. Intell. Res. 4(1), 37–43 (2008)

    Article  Google Scholar 

  15. Deldari, A.; Naghibzadeh, M.; Abrishami, S.: CCA: a deadline-constrained workflow scheduling algorithm for multicore resources on the cloud. J. Supercomput. 73(2), 756–781 (2017)

    Article  Google Scholar 

  16. Kalyan Chakravarthi, K.; Shyamala, L.; Vaidehi, V.: Budget aware scheduling algorithm for workflow applications in IaaS clouds. Clust. Comput. 1, 1–15 (2020)

    Google Scholar 

  17. Kianpisheh, S.; Charkari, N.M.; Kargahi, M.: Ant colony based constrained workflow scheduling for heterogeneous computing systems. Clust. Comput. 19(3), 1053–1070 (2016)

    Article  Google Scholar 

  18. Reddy, G.N.; Kumar, S.P.: Time- and cost-aware scheduling method for workflows in cloud computing systems. In: Proceedings of International Conference on Computational Intelligence and Data Engineering, pp. 215–227 (2017)

  19. Arabnejad, H.; Barbosa, J.G.; Prodan, R.: Low-time complexity budget-deadline constrained workflow scheduling on heterogeneous resources. Futur. Gen. Comput. Syst. 55, 29–40 (2016)

    Article  Google Scholar 

  20. Malawski, M.; Figiela, K.; Bubak, M.; Deelman, E.; Nabrzyski, J.: Scheduling multilevel deadline-constrained scientific workflows on clouds based on cost optimization. Sci. Program. 2015, 13 (2015)

    Google Scholar 

  21. Verma, A.; Kaushal, S.: Cost minimized PSO based workflow scheduling plan for cloud computing. Int. J. Inf. Technol. Comput. Sci. 7(8), 37–43 (2015)

    Google Scholar 

  22. Wang, L.; et al.: Energy-aware parallel task scheduling in a cluster. Futur. Gen. Comput. Syst. 29(7), 1661–1670 (2013)

    Article  Google Scholar 

  23. Wang, L.; Von Laszewski, G.; Dayal, J.; Wang, F.: Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In: CCGrid 2010—10th IEEE/ACM International Conference on Cluster Cloud, Grid Computing, pp. 368–377 (2010)

  24. Wu, C.M.; Chang, R.S.; Chan, H.Y.: A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters. Futur. Gen. Comput. Syst. 37, 141–147 (2014)

    Article  Google Scholar 

  25. Kim, K.H.; Buyya, R.; Kim, J.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: Proceedings of the Seventh IEEE International Symposium on Cluster Computing Grid, CCGrid 2007, pp. 541–548 (2007)

  26. Xie, G.; Jiang, J.; Liu, Y.; Li, R.; Li, K.: Minimizing energy consumption of real-time parallel applications using downward and upward approaches on heterogeneous systems. IEEE Trans. Ind. Inform. 13(3), 1068–1078 (2017)

    Article  Google Scholar 

  27. Xu, X.; Dou, W.; Zhang, X.; Chen, J.: EnReal: an energy-aware resource allocation method for scientific workflow executions in cloud environment. IEEE Trans. Cloud Comput. 4(2), 166–179 (2016)

    Article  Google Scholar 

  28. Sharma, M.; Garg, R.: HIGA: harmony-inspired genetic algorithm for rack-aware energy-efficient task scheduling in cloud data centers. Eng. Sci. Technol. Int. J. 23, 211–224 (2019)

    Google Scholar 

  29. Wahid, F.; Ghazali, R.; Ismail, L.H.: Improved firefly algorithm based on genetic algorithm operators for energy efficiency in smart buildings. Arab. J. Sci. Eng. 44(4), 4027–4047 (2019)

    Article  Google Scholar 

  30. Wahid, F.; Ismail, L.H.; Ghazali, R.; Aamir, M.: An efficient artificial intelligence hybrid approach for energy management in intelligent buildings. KSII Trans. Internet Inf. Syst. 13(12), 5904–5927 (2019)

    Google Scholar 

  31. Singh, V.; Gupta, I.; Jana, P.K.: An energy efficient algorithm for workflow scheduling in IAAS cloud. J. Grid Comput. 6, 1–20 (2019)

    Google Scholar 

  32. Yassa, S., Chelouah, R., Kadima, H., Granado, B.: Multi-objective approach for energy-aware workflow scheduling in cloud computing environments. Sci. World J. 2013, 1–13 (2013)

    Article  MATH  Google Scholar 

  33. Chantem, T.; et al.: Temperature-aware scheduling and assignment for hard real-time applications on MPSoCs. IEEE Trans. Very Large Scale Integr. Syst. 19(10), 1884–1897 (2011)

    Article  Google Scholar 

  34. Sun, H.; Stolf, P.; Pierson, J.M.: Spatio-temporal thermal-aware scheduling for homogeneous high-performance computing datacenters. Fut. Gen. Comput. Syst. 71, 157–170 (2017)

    Article  Google Scholar 

  35. Li, S.; Abdelzaher, T.: TAPA : Temperature Aware Power Allocation in Data Center with Map-Reduce (2012)

  36. Mukherjee, T.; Banerjee, A.; Varsamopoulos, G.; Gupta, S.K.S.: Spatio-temporal thermal-aware job scheduling to minimize energy consumption in virtualized heterogeneous data centers. Comput. Netw. 53(17), 2888–2904 (2010)

    Article  MATH  Google Scholar 

  37. Mooref, J.; Chasef, J.; Ranganathanf, P.; Sharma, R.: Making scheduling ‘cool’: temperature-aware workload placement in data centers. In: USENIX Annual Technical Conference, General Track, pp. 61–75 (2005)

  38. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F.; Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms Ro. Softw. Pract. Exp. 39(7), 23–50 (2011)

    Article  Google Scholar 

  39. Juve, G.; Chervenak, A.; Deelman, E.; Bharathi, S.; Mehta, G.; Vahi, K.: Characterizing and profiling scientific workflows. Future Gen. Comput. Syst. 29(3), 682–692 (2013)

    Article  Google Scholar 

  40. Bharathi, S.; et al.: Characterization of scientific workflows. In: 2008 3rd Work. Support Large-Scale Science Work, pp. 1–10 (2008)

  41. Cho, J.; Park, B.; Jeong, Y.; Lee, S.: Thermal performance evaluation of a high-density data centre for cooling system under fault conditions. E3S Web Conf. 111(2019), 1–8 (2019)

    Google Scholar 

  42. Southern California Earthquake Center. http://www.scec.org

  43. Montage: An Astronomical Image Engine. http://montage.ipac.caltech.edu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Rani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, R., Garg, R. Power and Temperature-Aware Workflow Scheduling Considering Deadline Constraint in Cloud. Arab J Sci Eng 45, 10775–10791 (2020). https://doi.org/10.1007/s13369-020-04879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04879-8

Keywords

Navigation