Skip to main content
Log in

Microstructural, Mechanical, and Electrochemical Properties of Quenched and Partitioned 3 wt% Mn Steel

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Herein, an attempt has been made to investigate effect of C and Mn partitioning during quenching and partitioning heat-treatment process on microstructure, mechanical, and electrochemical properties of experimental 3 wt% Mn steel. The quenching and partitioning heat-treatment process was applied to the experimental steel with varying partitioning time periods ranging from 15 to 120 s at a constant partitioning temperature of 425 °C. The partitioning time period of 15 s resulted in a high volume fraction of supersaturated lath martensite with a small volume fraction of retained austenite. With increasing partitioning time period to 45–60 s, diffusion of C and Mn from martensite to retained austenite occurred resulting in the formation of decreased volume fraction of martensite phase with a reduced carbon and increased volume fraction of retained austenite phase with increased carbon. Partitioning for 90 s produced a moderate volume fraction of both lath martensite and retained austenite phases with nucleation of secondary phase, epsilon carbides. This phase transformation provided an optimum combination of 21% improved Vickers hardness and threefold improved impact toughness compared to as-received steel. Electrochemical properties of quenched and partitioned 3 wt% Mn steel were also evaluated in a 3 wt% NaCl solution. The highest corrosion resistance was achieved after prolonged partitioning of 120 s, whereas slightly low corrosion resistance was achieved after partitioning of 90 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seo, E.J.; Cho, L.; Kim, J.K.; Mola, J.; Zhao, L.; Lee, S.; Cooman, B.C.D.: Focused ion beam-induced displacive phase transformation from austenite to martensite during fabrication of quenched and partitioned steel micro-pillar. J. Alloys Compd. 812, 152061 (2020)

    Article  Google Scholar 

  2. Ariza-Echeverri, E.A.; Masoumi, M.; Nishikawa, A.S.; Mesa, D.H.; Marquez-Rossy, A.E.; Tschiptschin, A.P.: Development of a new generation of quench and partitioning steels: influence of processing parameters on texture, nanoindentation, and mechanical properties. Mater. Des. 186, 108329 (2020)

    Article  Google Scholar 

  3. Peng, F.; Xu, Y.; Gu, X.; Wang, Y.; Liu, X.; Li, J.: The relationships of microstructure mechanical properties in quenching and partitioning (Q & P) steel accompanied with microalloyed carbide precipitation. Mater. Sci. Eng., A 728, 247–258 (2018)

    Article  Google Scholar 

  4. Dai, Z.; Ding, R.; Yang, Z.; Zhang, C.; Chen, H.: Elucidating the effect of Mn partitioning on interface migration and carbon partitioning during quenching and partitioning of the Fe–C–Mn–Si steels: modeling and experiments. Acta Mater. 144, 666–678 (2018)

    Article  Google Scholar 

  5. Allain, S.Y.P.; Geandier, G.; Hell, J.C.; Soler, M.; Danoix, F.; Gouné, M.: In-situ investigation of quenching and partitioning by high energy X-ray diffraction experiments. Scr. Mater. 131, 15–18 (2017)

    Article  Google Scholar 

  6. Inam, A.; Ishtiaq, M.; Hafeez, A.; Nawaz, M.; Rizwan, M.; Hassan, M.H.: Quenching and partitioning of AISI 4340 steel. J. Fac. Eng. Technol. 24, 47–56 (2017)

    Google Scholar 

  7. Akbary, F.H.; Sietsma, J.; Petrov, R.H.; Miyamoto, G.; Furuhara, T.; Santofimia, M.J.: A quantitative investigation of the effect of Mn segregation on microstructural properties of quenching and partitioning steels. Scr. Mater. 137, 27–30 (2017)

    Article  Google Scholar 

  8. Huyghe, P.; Malet, L.; Caruso, M.; Georges, C.; Godet, S.: On the relationship between the multiphase microstructure and mechanical properties of a 0.2 C quenched and partitioned steel. Mater. Sci. Eng., A 701, 254–263 (2017)

    Article  Google Scholar 

  9. Wang, M.M.; Hell, J.C.; Tasan, C.C.: Martensite size effects on damage in quenching and partitioning steels. Scr. Mater. 138, 1–5 (2017)

    Article  Google Scholar 

  10. Moor, E.D.; Speer, J.G.; Matlock, D.K.; Kwak, J.H.; Lee, S.B.: Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels. ISIJ Int. 51, 137–144 (2011)

    Article  Google Scholar 

  11. Yaqiang, T.; Wang, L.; Xiaoping, Z.; Yingli, W.; Jinying, S.; Liansheng, C.: Application of alloy elements in quenching and partitioning steel: an overview. Mater. Rep. 33, 1109–1118 (2019)

    Google Scholar 

  12. Cai, H.L.; Chen, P.; Oh, J.K.; Cho, Y.R.; Wu, D.; Yi, H.L.: Quenching and flash-partitioning enables austenite stabilization during press-hardening processing. Scr. Mater. 178, 77–81 (2020)

    Article  Google Scholar 

  13. Wu, J.; Bao, L.; Gu, Y.; Li, Q.; Liu, J.: The strengthening and toughening mechanism of dual martensite in quenching-partitioning steels. Mater. Sci. Eng., A 772, 138765 (2020)

    Article  Google Scholar 

  14. Pierce, D.T.; Coughlin, D.R.; Clarke, K.D.; Moor, E.D.; Poplawsky, J.; Williamson, D.L.; Mazumder, B.; Speer, J.G.; Hood, A.; Clarke, A.J.: Microstructural evolution during quenching and partitioning of 0.2C–1.5Mn–1.3Si steels with Cr or Ni additions. Acta Mater. 151, 454–469 (2018)

    Article  Google Scholar 

  15. Wendler, M.; Ullrich, C.; Hauser, M.; Krger, L.; Volkova, O.; Wei, A.; Mola, J.: Quenching and partitioning (Q and P) processing of fully austenitic stainless steels. Acta Mater. 133, 346–355 (2017)

    Article  Google Scholar 

  16. Yang, J.; Lu, Y.; Guo, Z.; Gu, J.; Gu, C.: Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution. Corros. Sci. 130, 64–75 (2018)

    Article  Google Scholar 

  17. Kimand, K.; Lee, S.J.: Effect of Ni addition on the mechanical behavior of quenching and partitioning (Q & P) steel. Mater. Sci. Eng., A 698, 183–190 (2017)

    Article  Google Scholar 

  18. Moor, E.D.; Matlock, D.K.; Speer, J.G.; Merwin, M.J.: Austenite stabilization through manganese enrichment. Scr. Mater. 64, 185–188 (2011)

    Article  Google Scholar 

  19. Ayenampudi, S.; Celada-Casero, C.; Sietsma, J.; Santofimia, M.J.: Microstructure evolution during high-temperature partitioning of a medium-Mn quenching and partitioning steel. Materialia 8, 100492 (2019)

    Article  Google Scholar 

  20. Knijf, D.D.; Santofimia, M.J.; Shi, H.; Bliznuk, V.; Föjer, C.; Petrov, R.; Xu, W.: In situ austenite–martensite interface mobility study during annealing. Acta Mater. 90, 161–168 (2015)

    Article  Google Scholar 

  21. Gouné, M.; Aoued, S.; Danoix, F.; Geandier, G.; Poulon, A.Q.; Hell, J.C.; Soler, M.; Allain, S.Y.P.: Alloying-element interactions with austenite/martensite interface during quenching and partitioning of a model Fe–C–Mn–Si alloy. Scr. Mater. 162, 181–184 (2019)

    Article  Google Scholar 

  22. Seo, E.J.; Cho, L.; Cooman, B.C.D.: Kinetics of the partitioning carbon and substitutional alloying elements during quenching and partitioning (Q&P) processing of medium Mn steel. Acta Mater. 107, 354–365 (2016)

    Article  Google Scholar 

  23. Toji, Y.; Matsuda, H.; Herbig, M.; Choi, P.P.; Raabe, D.: Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Mater. 65, 215–228 (2014)

    Article  Google Scholar 

  24. Lu, S.Y.; Yao, K.F.; Chen, Y.B.; Wang, M.H.; Chen, N.; Ge, X.Y.: Effect of quenching and partitioning on the microstructure evolution and electrochemical properties of a martensitic stainless steel. Corros. Sci. 103, 95–104 (2016)

    Article  Google Scholar 

  25. Lu, S.Y.; Yao, K.F.; Chen, Y.B.; Wang, M.H.; Liu, X.; Ge, X.: The effect of tempering temperature on the microstructure and electrochemical properties of a 13 wt.% Cr-type martensitic stainless steel. Electrochim. Acta 165, 45–55 (2015)

    Article  Google Scholar 

  26. Hafeez, M.A.; Farooq, A.: Microstructural, mechanical and tribological investigation of 30CrMnSiNi2A ultra-high strength steel under various tempering temperatures. Mater. Res. Express 5, 016505 (2018)

    Article  Google Scholar 

  27. Liu, C.; Zhao, Z.; Northwood, D.O.; Liu, Y.: A new empirical formula for the calculation of MS in pure iron super low alloy steels. J. Mater. Res. Technol. 113, 556–562 (2011)

    Article  Google Scholar 

  28. Hafeez, M.A.; Inam, A.; Farooq, A.: Mechanical and corrosion properties of medium carbon low alloy steel after cyclic quenching and tempering heat-treatments. Mater. Res. Express 7, 016553 (2020)

    Article  Google Scholar 

  29. Hafeez, M.A.; Farooq, A.: Effect of quenching baths on microstructure and hardness of AISI1035 steel. Niger. J. Technol. Res. 13, 82–88 (2018)

    Article  Google Scholar 

  30. Inam, A.; Imtiaz, Y.; Hafeez, M.A.; Munir, S.; Ali, Z.; Ishtiaq, M.; Hassan, M.H.; Maqbool, A.; Haider, W.: Effect of tempering time on microstructure, mechanical, and electrochemical properties of quenched–partitioned–tempered advanced high strength steel (AHSS). Mater. Res. Express 6, 126509 (2020)

    Article  Google Scholar 

  31. Chen, S.; Wang, G.; Liu, C.; Wang, C.; Zhao, X.; Xu, W.: Correlation of isothermal bainite transformation and austenite stability in quenching and partitioning steels. J. Iron. Steel Res. Int. 24, 1095–1103 (2017)

    Article  Google Scholar 

  32. Kong, H.; Chao, Q.; Cai, M.H.; Pavlina, E.J.; Rolfe, B.; Hodgson, P.D.; Beladi, H.: One-step quenching and partitioning treatment of a commercial low silicon boron steel. Mater. Sci. Eng., A 707, 538–547 (2017)

    Article  Google Scholar 

  33. Nishikawa, A.S.; Santofimia, M.J.; Sietsma, J.; Goldenstein, H.: Influence of bainite reaction on the kinetics of carbon redistribution during the quenching and partitioning process. Acta Mater. 142, 142–151 (2018)

    Article  Google Scholar 

  34. Hafeez, M.A.; Farooq, A.: Effect of heat treatments on the mechanical and electrochemical corrosion behavior of 38CrSi and AISI 4140 steels. Metallogr. Microstruct. Anal. 8, 479–487 (2019)

    Article  Google Scholar 

  35. Hafeez, M.A.; Inam, A.; Arshad, M.A.: Investigation on microstructural, mechanical, and electrochemical properties of water, brine quenched and tempered low carbon steel. Mater. Res. Express 6, 096524 (2019)

    Article  Google Scholar 

  36. Hafeez, M.A.: Effect of microstructural transformation during tempering on mechanical properties of quenched and tempered 38CrSi steel. Mater. Res. Express 6, 086552 (2019)

    Article  Google Scholar 

  37. Hidalgo, J.; Celada-Casero, C.; Santofimia, M.J.: Fracture mechanisms and microstructure in a medium Mn quenching and partitioning steel exhibiting macrosegregation. Mater. Sci. Eng., A 754, 766–777 (2019)

    Article  Google Scholar 

  38. Nayak, S.S.; Anumolu, R.; Misra, R.D.K.; Kim, K.H.; Lee, D.L.: Microstructure–hardness relationship in quenched and partitioned medium-carbon and high-carbon steels containing silicon. Mater. Sci. Eng., A 498, 442–456 (2008)

    Article  Google Scholar 

  39. Roberge, P.R.: Handbook of Corrosion Engineering. McGraw-Hill, New York (2000)

    Google Scholar 

  40. Hafeez, M.A.; Usman, M.; Arshad, M.A.; Umer, M.A.: Nanoindentation-based micro-mechanical and electrochemical properties of quench-hardened, tempered low-carbon steel. Crystals 10, 508 (2020)

    Article  Google Scholar 

  41. Hafeez, M.A.; Inam, A.; Hassan, M.U.; Umer, M.A.; Usman, M.; Hanif, A.: Optimized corrosion performance of AISI 1345 steel in hydrochloric acid through thermo-mechanical cyclic annealing processes. Crystals 10, 265 (2020)

    Article  Google Scholar 

  42. Revie, R.W.; Uhlig, H.H.: Corrosion and Corrosion Control, 4th edn. Wiley, New York (2008)

    Book  Google Scholar 

  43. Hafeez, M.A.: Investigation on mechanical properties and immersion corrosion performance of 0.35% C–10.5% Mn steel processed by austenite reverted transformation (ART) annealing process. Metallogr. Microstruct. Anal. 9, 159–168 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Inam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inam, A., Hafeez, M.A., Atif, M. et al. Microstructural, Mechanical, and Electrochemical Properties of Quenched and Partitioned 3 wt% Mn Steel. Arab J Sci Eng 46, 417–423 (2021). https://doi.org/10.1007/s13369-020-04867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04867-y

Keywords

Navigation