Skip to main content
Log in

Preparation of ZnWO4 (Sanmartinite) Powder Through Mechanochemical Method for Visible Light-Induced Photocatalysis

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

ZnWO4 (sanmartinite) powders were produced by mechanochemical synthesis using ZnO and WO3 at 700 rpm for 25, 50 and 100 min, respectively. SEM indicated the ratio of sub-micron-sized ZnWO4 particles was raised, and particle size distribution was homogenized by increasing process time. XRD results revealed the formation of sanmartinite after 100 min milling with 700 rpm. Raman Spectroscopy confirmed the XRD results except detection of WO3 and ZnO traces. The surface area of the samples was ranged between 3.65 and 4.05 m2/g. Optical band-gap energies of the samples increased from 2.68 to 2.86 eV with further process time. Under the visible light, the highest photocatalytic efficiency for degradation of malachite green dyes was observed in sample ball milled at 700 rpm for 25 min. Samples ball milled at 700 rpm for 100 min have lower photocatalytic activity compared to samples ball milled at 700 rpm 25 and 50 min. The efficiency of photocatalytic activities changed from 45 to 83% after 120-min photocatalysis process. It is possible to claim that ZnWO4 powders are promising photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rajrana, K.; Gupta, A.; Mir, R.A.; Pandey, O.P.: Facile sono-chemical synthesis of nanocrystalline MnO2 for catalytic and capacitive applications. Physica B 564, 179–185 (2019). https://doi.org/10.1016/j.physb.2019.04.002

    Article  Google Scholar 

  2. Sharma, J.; Gupta, A.; Pandey, O.P.: Effect of Zr doping and aging on optical and photocatalytic properties of ZnS nano powder. Ceram. Int. 45, 13671–13678 (2019). https://doi.org/10.1016/j.ceramint.2019.04.061

    Article  Google Scholar 

  3. Dutta, D.P.; Raval, P.: Effect of transition metal ion (Cr3+, Mn2+ and Cu2+) doping on the photocatalytic properties of ZnWO4 nanoparticles. J. Photochem. Photobiol. A 357, 193–200 (2018). https://doi.org/10.1016/j.jphotochem.2018.02.026

    Article  Google Scholar 

  4. Dodd, A.; McKinley, A.; Tsuzuki, T.; Saunders, M.: Mechanochemical synthesis of nanoparticulate ZnO–ZnWO4 powders and their photocatalytic activity. J. Eur. Ceram. Soc. 29, 139–144 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.05.027

    Article  Google Scholar 

  5. Marschall, R.; Wang, L.: Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal. Today 225, 111–135 (2014). https://doi.org/10.1016/j.cattod.2013.10.088

    Article  Google Scholar 

  6. Li, K.; Xue, J.; Zhang, Y.; Wei, H.; Liu, Y.; Dong, C.: ZnWO4 nanorods decorated with Ag/AgBr nanoparticles as highly efficient visible-light-responsive photocatalyst for dye AR18photodegradation. Appl. Surf. Sci. 320, 1–9 (2014). https://doi.org/10.1016/j.apsusc.2014.09.060

    Article  Google Scholar 

  7. Jin, Z.; Duan, W.; Liu, B.; Chen, X.; Yang, F.; Guo, J.: Fabrication of efficient visible light activated Cu–P25–graphene ternary composite for photocatalytic degradation of methyl blue. Appl. Surf. Sci. 356, 707–718 (2015). https://doi.org/10.1016/j.apsusc.2015.08.122

    Article  Google Scholar 

  8. Lu, J.; Liu, M.; Zhou, S.; Zhou, X.; Yang, Y.: Electrospinning fabrication of ZnWO4 nanofibers and photocatalytic performance for organic dyes. Dyes Pigm. 136, 1–7 (2017). https://doi.org/10.1016/j.dyepig.2016.08.008

    Article  Google Scholar 

  9. Mancheva, M.; Iordanova, R.; Dimitriev, Y.: Mechanochemical synthesis of nanocrystalline ZnWO4 at room temperature. J. Alloy. Compd. 509, 15–20 (2011). https://doi.org/10.1016/j.jallcom.2010.08.033

    Article  Google Scholar 

  10. Lin, S.; Chen, J.; Weng, X.; Yang, L.; Chen, X.: Fabrication and photocatalysis of mesoporous ZnWO4 with PAMAM as a template. Mater. Res. Bull. 44, 1102–1105 (2009). https://doi.org/10.1016/j.materresbull.2008.10.011

    Article  Google Scholar 

  11. Keereeta, Y.; Thongtem, S.; Thongtem, T.: Enhanced photocatalytic degradation of methylene blue by WO3/ZnWO4 composites synthesized by a combination of microwave-solvothermal method and incipient wetness procedure. Powder Technol. 284, 85–94 (2015). https://doi.org/10.1016/j.powtec.2015.06.046

    Article  Google Scholar 

  12. Garadkar, K.M.; Ghule, L.A.; Sapnar, K.B.; Dhole, S.D.: A facile synthesis of ZnWO4 nanoparticles by microwave assisted technique and its application in photocatalysis. Mater. Res. Bull. 48, 1105–1109 (2013). https://doi.org/10.1016/j.materresbull.2012.12.002

    Article  Google Scholar 

  13. Wang, Y.; Liping, L.; Li, G.: Solvothermal synthesis, characterization and photocatalytic performance of Zn-rich ZnWO4 nanocrystals. Appl. Surf. Sci. 393, 159–167 (2017). https://doi.org/10.1016/j.apsusc.2016.10.001

    Article  Google Scholar 

  14. Tan, D.; Garcia, F.: Main group mechanochemistry: from curiosity to established protocols. Chem. Soc. Rev. 48(8), 2273–2292 (2019). https://doi.org/10.1039/c7cs00813a

    Article  Google Scholar 

  15. Chen, S.J.; Zhou, J.H.; Chen, X.T.; Li, J.; Li, L.H.; Hong, J.M.; et al.: Fabrication of nanocrystalline ZnWO4 with different morphologies and sizes via hydrothermal route. Chem. Phys. Lett. 375, 185–190 (2003). https://doi.org/10.1016/S0009-2614(03)00878-9

    Article  Google Scholar 

  16. Huang, J.; Gao, L.: One-step fabrication of ZnWO4 hollow spheres by nanoparticle aggregation and ripening in alcohol solution. J. Am. Ceram. Soc. 89–12, 3877–3880 (2006). https://doi.org/10.1111/j.1551-2916.2006.01318.x

    Article  Google Scholar 

  17. Amouzegar, Z.; Naghizadeh, R.; Rezaie, H.R.; Ghari, M.; Aminzari, M.: Cubic ZnWO4 nano-photocatalysts synthesized by the microwave-assisted precipitation technique. Ceram. Int. 41, 1743–1747 (2015). https://doi.org/10.1016/j.ceramint.2014.09.119

    Article  Google Scholar 

  18. Wieczorek-Ciurowa, K.; Gamrat, K.: Some aspects of mechanochemical reactions. Mater. Sci. Pol. 25(1), 219–232 (2007). http://www.materialsscience.pwr.wroc.pl/bi/vol25no1/articles/ms_2006_037.pdf

  19. Shao, D.; Yu, M.; Lian, J.; Sawyer, S.: An ultraviolet photodetector fabricated from WO3 nanodiscs/reduced graphene oxide composite material. Nanotechnology 24, 1–5 (2013). https://doi.org/10.1088/0957-4484/24/29/295701

    Article  Google Scholar 

  20. Huang, B.R.; Lin, T.C.; Chu, K.T.; Yang, Y.K.; Lin, J.C.: Field emission properties of zinc oxide/zinc tungstate (ZnO/ZnWO4) composite nanorods. Surf. Coat. Technol. 231, 289–292 (2013). https://doi.org/10.1016/j.surfcoat.2012.05.006

    Article  Google Scholar 

  21. Shim, H.W.; Lim, A.H.; Lee, G.H.; Jung, H.C.; Kim, D.W.: Fabrication of core/shell ZnWO4/carbon nanorods and their Li electroactivity. Nanoscale Res. Lett. 7–9, 1–7 (2012). https://doi.org/10.1186/1556-276X-7-9

    Article  Google Scholar 

  22. Arin, J.; Dumrongrojthanath, P.; Yayapao, O.; Phuruangrat, A.; Thongtem, S.; Thongtem, T.: Synthesis, characterization and optical activity of La-doped ZnWO4 nanorods by hydrothermal method. Superlattices Microstruct. 67, 197–206 (2014). https://doi.org/10.1016/j.spmi.2013.12.024

    Article  Google Scholar 

  23. Manakkadu, S.: Synthesis and tribological study of selected double metal oxide nanomaterials. Annamalai University, M.S Thesis (2000). https://search.proquest.com/docview/578523960/7685CBFB2FBC4C0CPQ/1?accountid=13654

  24. Elamin, N.; Elsanousi, A.: Synthesis of ZnO nanostructures and their photocatalytic activity. J. Appl. Ind. Sci. 1(1), 32–35 (2013). https://pdfs.semanticscholar.org/73b3/048e29cf7aeb3cc889b085b22c200ef61a83.pdf

  25. Kumar, S.S.; Venkateswarlu, P.; Rao, V.R.; Rao, G.N.: Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett. 30–3, 1–6 (2013). https://doi.org/10.1186/2228-5326-3-30

    Article  Google Scholar 

  26. Hua-Jun, Y.; Ya-Qi, C.; Fang, Y.; Yue-Hua, P.; Xiong-Wu, H.; Ding, Z.; Dong-Sheng, T.: Hydrothermal synthesis and chromic properties of hexagonal WO3 nanowires. Chin. Phys. B 20–3, 1–6 (2011). https://doi.org/10.1088/1674-1056/20/3/036103

    Article  Google Scholar 

  27. Jiang, X.; Zhao, X.; Duan, L.; Shen, H.; Liu, H.; Hou, T.; Wang, F.: Enhanced photoluminescence and photocatalytic activity of ZnO-ZnWO4 nanocomposites synthesized by a precipitation method. Ceram. Int. 42, 15160–15165 (2016). https://doi.org/10.1016/j.ceramint.2016.05.098

    Article  Google Scholar 

  28. Qi, K.; Cheng, B.; Yu, J.; Ho, W.: Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloy. Compd. 727, 792–820 (2017). https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  Google Scholar 

  29. Atacan, K.; Guy, N.; Cakar, S.; Ozacar, M.: Efficiency of glucose oxidase immobilized on tannin modified NiFe2O4 nanoparticles on decolorization of dye in the Fenton and photo-biocatalytic processes. J. Photochem. Photobiol. A 382, 1–9 (2019). https://doi.org/10.1016/j.jphotochem.2019.111935

    Article  Google Scholar 

  30. Teymouri, M.; Khorsandi, H.; Aghapour, A.A.; Jafari, S.J.; Maleki, R.: Electro-Fenton method for the removal of Malachite Green: effect of operational parameters. Appl. Water Sci. 10–39, 1–14 (2020). https://doi.org/10.1007/s13201-019-1123-5

    Article  Google Scholar 

  31. Osotsi, M.I.; Macharia, D.K.; Zhu, B.; Wang, Z.; Shen, X.; Liu, Z.; Zhang, L.; Chen, Z.: Synthesis of ZnWO4−x nanorods with oxygen vacancy for efficient photocatalytic degradation of tetracycline. Progr. Nat. Sci. Mater. Int. 28, 408–415 (2017). https://doi.org/10.1016/j.pnsc.2018.01.007

    Article  Google Scholar 

  32. Gao, B.; Fan, H.; Zhang, X.; Song, L.: Template-free hydrothermal synthesis and high photocatalytic activity of ZnWO4 nanorods. Mater. Sci. Eng., B 177, 1126–1132 (2012). https://doi.org/10.1016/j.mseb.2012.05.022

    Article  Google Scholar 

  33. Andrade Neto, N.F.; Nunes, T.B.O.; Li, M.; Longo, E.; Movio, M.R.D.; Motta, F.V.: Influence of microwave-assisted hydrothermal treatment time on the crystallinity, morphology and optical properties of ZnWO4 nanoparticles. Photocatal. Act. Ceram. Int. 46, 1766–1774 (2020). https://doi.org/10.1016/j.ceramint.2019.09.151

    Article  Google Scholar 

  34. Wu, Y.; Zhou, S.; He, T.; Jin, X.; Lun, L.: Photocatalytic activities of ZnWO4 and Bi@ZnWO4 nanorods. Appl. Surf. Sci. 484, 409–413 (2019). https://doi.org/10.1016/j.apsusc.2019.04.116

    Article  Google Scholar 

  35. Zhu, J.; Liu, M.; Tang, Y.; Sun, T.; Ding, J.; Han, L.; Wang, M.: Facile photochemical synthesis of ZnWO4/Ag yolk-shell microspheres with enhanced visible-light photocatalytic activity. Mater. Lett. 190, 60–63 (2017). https://doi.org/10.1016/j.matlet.2016.12.056

    Article  Google Scholar 

  36. Song, X.C.; Li, W.T.; Huang, W.Z.; Zhou, H.; Zheng, Y.F.; Yin, H.Y.: A novel pen heterojunction BiOBr/ZnWO4: preparation and its improved visible light photocatalytic activity. Mater. Chem. Phys. 160, 251–256 (2015). https://doi.org/10.1016/j.matchemphys.2015.04.033

    Article  Google Scholar 

  37. Wei, L.; Zhang, H.; Chao, J.: Electrospinning of Ag/ZnWO4/WO3 composite nanofibers with high visible light photocatalytic activity. Mater. Lett. 236, 171–174 (2019). https://doi.org/10.1016/j.matlet.2018.10.088

    Article  Google Scholar 

  38. Aslam, M.; Ismail, I.M.I.; Chandresekaran, S.; Hameed, A.: Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of phenols. J. Hazard. Mater. 276, 120–128 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.022

    Article  Google Scholar 

  39. Hameed, A.; Aslam, M.; Ismail, I.M.I.; Chandresekaran, S.; Kadi, M.W.; Gondal, M.A.: Sunlight assisted photocatalytic mineralization of nitrophenol isomers over W6+ impregnated ZnO. Appl. Catal. B 160–161, 227–239 (2014). https://doi.org/10.1016/j.apcatb.2014.05.023

    Article  Google Scholar 

  40. Aslam, M.; Soomro, M.T.; Ismail, I.M.I.; Salah, M.; Gondal, M.A.; Hameed, A.: Sunlight mediated removal of chlorophenols over tungsten supported ZnO: electrochemical and photocatalytic studies. J. Environ. Chem. Eng. 3(3), 1901–1911 (2015). https://doi.org/10.1016/j.jece.2015.07.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bindal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altinsoy, I., Guy, N., Ozacar, M. et al. Preparation of ZnWO4 (Sanmartinite) Powder Through Mechanochemical Method for Visible Light-Induced Photocatalysis. Arab J Sci Eng 46, 463–475 (2021). https://doi.org/10.1007/s13369-020-04859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04859-y

Keywords

Navigation