Skip to main content

Advertisement

Log in

Experimental Study of Square Concrete-Filled Welded Cold-Formed Steel Columns Under Concentric Loading

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the presence of composite action between steel and concrete, applications of concrete-filled tubular structures have increased rapidly in bridges, high-rise buildings and other infrastructures. In this study, a total of 15 square concrete-filled welded cold-formed steel columns were tested under concentric loading. Failure modes, ultimate strength and ductility of test specimens were analyzed on several parameters, including concrete compressive strength (f c  = 27, 35 and 44 MPa), cross-sectional slenderness ratio (B/t = 25, 31 and 42) and global slenderness ratio (L/B = 3, 5 and 10). The results show that increasing the concrete compressive strength improved the ultimate strength, but decreased ductility of the test specimens. On the other hand, columns with higher slenderness ratio (B/t or L/B) showed lower ultimate strength and less ductile behavior. Failure appearances of the test columns include: outward buckling of the steel tube, crushing of in-fill concrete and welding failure at the joint. Meanwhile, no cracks were found at the corners of the test specimens due to the use of round corner cold-formed built-up steel sections. Finally, the design approaches adopted in (Eurocode-4, AISC-360-10 and Wang et al. 2017) are compared with the ultimate strength of the test columns, which shows satisfactory agreement between the predicted and experimental capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4: a, b
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AISC:

American Institute of Steel Construction

EC4:

Eurocode 4

AS:

Australian code

CSA:

Canadian Standards Association

BNBC:

Bangladesh National Building Code

SCFST:

Square concrete-filled steel tubular column

CFST:

Concrete-filled steel tubular column

SCFWCFS:

Square concrete-filled welded cold-formed steel

B :

Width of column

D :

Depth of column

L :

Length of column

t :

Thickness of steel

B/t :

Column cross-sectional slenderness ratio

L/B :

Column global slenderness ratio

A s :

Area of steel

A c :

Area of concrete

LVDT:

Linear variable differential transformer

Af y :

Yield strength of structural steel

f u :

Ultimate stress of steel

E s :

Elastic modulus of steel

E c :

Elastic modulus of concrete

ε y :

Yield strain of steel

ε su :

Ultimate strain of steel at peak load

P ut,exp :

Ultimate load of the tested column

ε u :

Peak axial strain at ultimate load

DI:

Ductility index

SI:

Strength index

EIeff :

Effective stiffness of composite section

P e :

Elastic critical buckling load

K :

Effective length factor

L :

Laterally unbraced length of the member

W c :

Weight of concrete per unit volume

f c :

Compressive cylinder strength (4 inch × 8 inch) Concrete

ε 85% :

Axial displacement at 85% of the maximum load at the decay branch

References

  1. Han, L.-H.; Li, W.; Bjorhovde, R.: Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J. Constr. Steel Res. 100, 211–228 (2014). https://doi.org/10.1016/j.jcsr.2014.04.016

    Article  Google Scholar 

  2. Liew, J.Y.R.; Xiong, M.; Xiong, D.: Design of concrete-filled tubular beam-columns with high strength steel and concrete. Structures 8, 213–226 (2016). https://doi.org/10.1016/j.istruc.2016.05.005

    Article  Google Scholar 

  3. Romero, M.L.; Ibañez, C.; Espinos, A.; Portolés, J.M.; Hospitaler, A.: Influence of ultra-high strength concrete on circular concrete-filled dual steel columns. Structures 9, 13–20 (2017). https://doi.org/10.1016/j.istruc.2016.07.001

    Article  Google Scholar 

  4. Hassanein, M.F.; Elchalakani, M.; Karrech, A.; Patel, V.I.; Yang, B.: Behaviour of concrete-filled double-skin short columns under compression Through Finite Element Modelling: SHS Outer and SHS Inner Tubes. Structures 14, 358–375 (2018). https://doi.org/10.1016/j.istruc.2018.04.006

    Article  Google Scholar 

  5. Ekmekyapar, T.: Experimental performance of concrete filled welded steel tube columns. J. Constr. Steel Res. 117, 175–184 (2016). https://doi.org/10.1016/j.jcsr.2015.10.013

    Article  Google Scholar 

  6. Chan, T.-M.; Huai, Y.-M.; Wang, W.: Experimental investigation on lightweight concrete-filled cold-formed elliptical hollow section stub columns. J. Constr. Steel Res. 115, 434–444 (2015). https://doi.org/10.1016/j.jcsr.2015.08.029

    Article  Google Scholar 

  7. Serras, D.N.; Skalomenos, K.A.; Hatzigeorgiou, G.D.; Beskos, D.E.: Modeling of circular concrete-filled steel tubes subjected to cyclic lateral loading. Structures. 8, 75–93 (2016). https://doi.org/10.1016/j.istruc.2016.08.008

    Article  Google Scholar 

  8. Wang, J.; Wang, J.; Wang, H.: Seismic behavior of blind bolted CFST frames with semi-rigid connections. Structures 9, 91–104 (2017). https://doi.org/10.1016/j.istruc.2016.10.001

    Article  Google Scholar 

  9. de Oliveira, W.L.A.; De Nardin, S.; de Cresce El Debs, A.L.H.; El Debs, M.K.: Influence of concrete strength and length/diameter on the axial capacity of CFT columns. J. Constr. Steel. Res. 65, 2103–2110 (2009). https://doi.org/10.1016/j.jcsr.2009.07.004

    Article  Google Scholar 

  10. Ekmekyapar, T.; AL-Eliwi, B.J.M.: Experimental behaviour of circular concrete filled steel tube columns and design specifications. Thin-Walled Struct. 105, 220–230 (2016). https://doi.org/10.1016/j.tws.2016.04.004

    Article  Google Scholar 

  11. Chen, C.-C.; Ko, J.-W.; Huang, G.-L.; Chang, Y.-M.: Local buckling and concrete confinement of concrete-filled box columns under axial load. J. Constr. Steel Res. 78, 8–21 (2012). https://doi.org/10.1016/j.jcsr.2012.06.006

    Article  Google Scholar 

  12. Uy, B.: Strength of concrete-filled steel box columns incorporating local buckling. J. Struct. Eng. 126, 341–352 (2000). https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341)

    Article  Google Scholar 

  13. Uy, B.: Local and post-local buckling of concrete filled steel welded box columns. J. Constr. Steel Res. 47, 47–72 (1998). https://doi.org/10.1016/S0143-974X(98)80102-8

    Article  Google Scholar 

  14. Ge, H.; Usami, T.: Strength of concrete-filled thin-walled steel box columns: experiment. J. Struct. Eng. 118, 3036–3054 (1992). https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3036)

    Article  Google Scholar 

  15. Kitada, T.: Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan. Eng. Struct. 20, 347–354 (1998). https://doi.org/10.1016/S0141-0296(97)00026-6

    Article  Google Scholar 

  16. Roeder, C.W.; Cameron, B.; Brown, C.B.: Composite action in concrete-filled tubes. J. Struct. Eng. 125, 477–484 (1999). https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477)

    Article  Google Scholar 

  17. Petrus, C.; Abdul Hamid, H.; Ibrahim, A.; Parke, G.: Experimental behaviour of concrete filled thin walled steel tubes with tab stiffeners. J. Constr. Steel Res. 66, 915–922 (2010). https://doi.org/10.1016/j.jcsr.2010.02.006

    Article  Google Scholar 

  18. Sani, M.S.H.M.; Muftah, F.; Muda, M.F.; Tan, C.S.: Resistance of built-up cold-formed steel channel columns filled with concrete. J. Teknol. (2016). https://doi.org/10.11113/jt.v78.8498

    Article  Google Scholar 

  19. Schneider, S.P.: Axially loaded concrete-filled steel tubes. J. Struct. Eng. 124, 1125–1138 (1998). https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)

    Article  Google Scholar 

  20. Uy, B.: Strength of short concrete filled high strength steel box columns. J. Constr. Steel Res. 57, 113–134 (2001). https://doi.org/10.1016/S0143-974X(00)00014-6

    Article  Google Scholar 

  21. Han, L.-H.: Tests on stub columns of concrete-filled RHS sections. J. Constr. Steel Res. 58, 353–372 (2002). https://doi.org/10.1016/S0143-974X(01)00059-1

    Article  Google Scholar 

  22. Lam, D.; Williams, C.A.: Experimental study on concrete filled square hollow sections. Steel Compos. Struct. 4, 95–112 (2004). https://doi.org/10.12989/scs.2004.4.2.095

    Article  Google Scholar 

  23. Tao, Z.; Han, L.-H.; Wang, D.-Y.: Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete. Thin-Walled Struct. 46, 1113–1128 (2008). https://doi.org/10.1016/j.tws.2008.01.007

    Article  Google Scholar 

  24. Ellobody, E.; Young, B.; Lam, D.: Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. J. Constr. Steel Res. 62, 706–715 (2006). https://doi.org/10.1016/j.jcsr.2005.11.002

    Article  Google Scholar 

  25. Liang, Q.Q.; Uy, B.; Richard Liew, J.Y.: Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects. J. Constr. Steel Res. 62, 581–591 (2006). https://doi.org/10.1016/j.jcsr.2005.09.007

    Article  Google Scholar 

  26. Richard Liew, J.Y.; Xiong, D.X.: Effect of preload on the axial capacity of concrete-filled composite columns. J. Constr. Steel Res. 65, 709–722 (2009). https://doi.org/10.1016/j.jcsr.2008.03.023

    Article  Google Scholar 

  27. Zhao, X.L.; Packer, J.A.: Tests and design of concrete-filled elliptical hollow section stub columns. Thin-Walled Struct. 47, 617–628 (2009). https://doi.org/10.1016/j.tws.2008.11.004

    Article  Google Scholar 

  28. Han, L.-H.; Ren, Q.-X.; Li, W.: Tests on inclined, tapered and STS concrete-filled steel tubular (CFST) stub columns. J. Constr. Steel Res. 66, 1186–1195 (2010). https://doi.org/10.1016/j.jcsr.2010.03.014

    Article  Google Scholar 

  29. Ren, Q.-X.; Han, L.-H.; Lam, D.; Hou, C.: Experiments on special-shaped CFST stub columns under axial compression. J. Constr. Steel Res. 98, 123–133 (2014). https://doi.org/10.1016/j.jcsr.2014.03.002

    Article  Google Scholar 

  30. Lai, M.H.; Ho, J.C.M.: Axial strengthening of thin-walled concrete-filled-steel-tube columns by circular steel jackets. Thin-Walled. Struct. 97, 11–21 (2015). https://doi.org/10.1016/j.tws.2015.09.002

    Article  Google Scholar 

  31. EN 1994-1-1: Design of Composite Steel and Concrete Structures. Eurocode 4, Brussels, Belgium (2004)

  32. AISC-360-10: Specification for Structural Steel Buildings. American Institute of Steel Construction, Chicago, USA (2010)

  33. CSA Standard S16: Design of steel structures. Canadian Standards Association, Ontario, Canada (2009)

  34. DBJ13-51-2010: Technical Specification for Concrete-filled Steel Tubular Structures. The Construction Department of Fujian Province, Fuzhou, China (2010)

  35. AS5100: Bridge Design-steel and Composite Construction. Australian Standard, Australia (2004)

  36. BNBC: Bangladesh National Building Code. Dhaka, Draft version (2016)

  37. Wang, Z.-B.; Tao, Z.; Han, L.-H.; Uy, B.; Lam, D.; Kang, W.-H.: Strength, stiffness and ductility of concrete-filled steel columns under axial compression. Eng. Struct. 135, 209–221 (2017). https://doi.org/10.1016/j.engstruct.2016.12.049

    Article  Google Scholar 

  38. Standards Australia, AS/NZS 1391–2007 Metallic Materials: Tensile Testing at Ambient Temperature (2007)

  39. Ren, Q.-X.; Zhou, K.; Hou, C.; Tao, Z.; Han, L.-H.: Dune sand concrete-filled steel tubular (CFST) stub columns under axial compression: experiments. Thin-Walled. Struct. 124, 291–302 (2018). https://doi.org/10.1016/j.tws.2017.12.006

    Article  Google Scholar 

  40. Han, L.-H.; Ren, Q.-X.; Li, W.: Tests on stub stainless steel–concrete–carbon steel double-skin tubular (DST) columns. J. Constr. Steel Res. 67, 437–452 (2011). https://doi.org/10.1016/j.jcsr.2010.09.010

    Article  Google Scholar 

Download references

Acknowledgements

All assistance including laboratory, computing and financial supports from Bangladesh University of Engineering and Technology (BUET) (Grant No. 0417042355), Dhaka, Bangladesh, is gratefully acknowledged. In addition, the authors would like to thank McDonalds Steel Building Products Ltd. for the supply of the tubular built-up steel sections for the CFST specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mofizul Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.M., Ali, R.B., Begum, M. et al. Experimental Study of Square Concrete-Filled Welded Cold-Formed Steel Columns Under Concentric Loading. Arab J Sci Eng 46, 4225–4237 (2021). https://doi.org/10.1007/s13369-020-04797-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04797-9

Keywords

Navigation