Skip to main content
Log in

The Efficiency of Waste Marble Powder in the Stabilization of Fine-Grained Soils in Terms of Volume Changes

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The recycling of waste marble powder (MP) for soil stabilization is still under research for geotechnical engineers, with the aim of improving poor soil properties. This paper investigated the effect of calcitic marble powder (CMP) and dolomitic marble powder (DMP) on the geotechnical properties of fine-grained soils. Consistency limits, linear shrinkage, expansion index, and one-dimensional consolidation tests were performed on non-stabilized and stabilized samples with 5, 10, 20, 30, and 50% of waste CMP and DMP to determine the efficiency of using waste marble powders in soil stabilization. The marble powder ratio which gave the best results was determined as 50% for both MH samples and CH samples. The laboratory test results showed that the waste marble powders were effective in soil stabilization by reducing the plasticity index from 49 to 26 for the CH samples and from 21 to 9 for the MH sample, expansion index from 45 to 20 for the CH sample and from 32 to 7 for the MH sample, swelling index from 0.0030 to 0.0012 for the MH sample, compression index from 0.013 to 0.010 for the MH sample, and linear shrinkage from 16.2 to 10.5 for the CH sample. The waste MP content and fine-grained soil type need to be taken into consideration in soil stabilization based on volume change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lim, S.M.; Wijeyesekera, D.C.; Lim, A.J.M.S.; Bakar, I.B.H.: Critical review of innovative soil road stabilization techniques. Int. J. Eng. Adv. Technol. 3(5), 204–211 (2014)

    Google Scholar 

  2. Sabzi, Z.: Environmental friendly soil stabilization materials available in Iran. JEFM 2(1), 33–39 (2018)

    Google Scholar 

  3. Gupta, C.; Sharma, R.K.: Influence of marble dust, fly ash and beas sand on sub grade characteristics of expansive soil. In: International Conference on Advances in Engineering & Technology, IOSR-JMCE, pp. 13–18 (2014)

  4. Zhang, T.; Cai, G.; Liu, S.; Puppala, A.J.: Engineering properties and microstructural characteristics of foundation silt stabilized by lignin-based industrial by-product. KSCE J. Civ. Eng. 20(7), 2725–2736 (2016). https://doi.org/10.1007/s12205-016-1325-4

    Article  Google Scholar 

  5. Yilmaz, F.; Yurdakul, M.: Evaluation of marble dust for soil stabilization. Acta Phys. Pol. 132(3), 710–711 (2017). https://doi.org/10.12693/APhysPolA.132.710

    Article  Google Scholar 

  6. Al-Bared, M.A.M.; Marto, A.; Latifi, N.: Utilization of recycled tiles and tyres in stabilization of soils and production of construction materials—a state-of-the-art review. KSCE J. Civ. Eng. 22(10), 3860–3874 (2018). https://doi.org/10.1007/s12205-018-1532-2

    Article  Google Scholar 

  7. Ziani, H.; Abbèche, K.; Messaoudene, I.; Pais, A.L.J.: Treatment of collapsible soils by additions of granulated slag and natural pozzolan. KSCE J. Civ. Eng. 23(3), 1028–1042 (2019). https://doi.org/10.1007/s12205-019-0051-0

    Article  Google Scholar 

  8. Oncu, S.; Bilsel, H.: Ageing effect on swell, shrinkage and flexural strength of sand and waste marble powder stabilized expansive soil. E3S Web Conf. (2016). https://doi.org/10.1051/e3sconf/20160913003

    Article  Google Scholar 

  9. Balkis, A.P.: The effects of waste marble dust and polypropylene fiber contents on mechanical properties of gypsum stabilized earthen. Constr. Build. Mater. 134, 556–562 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.172

    Article  Google Scholar 

  10. Senol, A.; Edil, T.B.; Bin-Shafique, M.S.; Acosta, H.A.; Benson, C.H.: Soft subgrades’ stabilization by using various fly ashes. Resour. Conserv. Recycl. 46(4), 365–376 (2006). https://doi.org/10.1016/j.resconrec.2005.08.005

    Article  Google Scholar 

  11. Başer, O.: Stabilization of expansive soils using waste marble dust. MSc Thesis in Civil Engineering, Middle East Technical University, Ankara (2009)

  12. Cetin, B.; Aydilek, A.H.; Guney, Y.: Stabilization of recycled base materials with high carbon fly ash. Resour. Conserv. Recycl. 54(11), 878–892 (2010). https://doi.org/10.1016/j.resconrec.2010.01.007

    Article  Google Scholar 

  13. Bhavsar, S.N.; Patel, A.J.: Behavior of black cotton soil after stabilization with marble powder. Int. J. Sci. Res. (IJSR) 3(12), 769 (2014)

    Google Scholar 

  14. Yazdandoust, F.; Yasrobi, S.S.: Effect of cyclic wetting and drying on swelling behavior of polymer-stabilized expansive clays. Appl. Clay Sci. 50(4), 461–468 (2010). https://doi.org/10.1016/j.clay.2010.09.006

    Article  Google Scholar 

  15. Sabat, A.K.: Stabilization of expansive soil using waste ceramic dust. Electron. J. Geotech. Eng. 17, 3915–3926 (2012)

    Google Scholar 

  16. James, J.; Pandian, P.K.: Soil stabilization as an avenue for reuse of solid wastes: a review. Acta Tech. Napocensis 58(1), 50–76 (2015)

    Google Scholar 

  17. Öncü, Ş.; Bilsel, H.: Utilization of waste marble to enhance volume change and strength characteristics of sand-stabilized expansive soil. Environ. Earth Sci. 77(12), 461 (2018)

    Article  Google Scholar 

  18. Sivrikaya, O.; Kıyıldı, K.R.; Karaca, Z.: Recycling waste from natural stone processing plants to stabilise clayey soil. Environ. Earth Sci. 71(10), 4397–4407 (2014)

    Article  Google Scholar 

  19. RTMEN: Republic of Turkey Ministry of Energy and Natural Resources (2019). www.enerji.gov.tr. Accessed 10 Mar 2020

  20. MTA: Mineral Research & Exploration General Directorate reports (2019). www.mta.gov.tr. Accessed 10 Mar 2020

  21. Celik, M.Y.; Sabah, E.: Geological and technical characterisation of Iscehisar (Afyon-Turkey) marble deposits and the impact of marble waste on environmental pollution. J. Environ. Manag. 87(1), 106–116 (2008). https://doi.org/10.1016/j.jenvman.2007.01.004

    Article  Google Scholar 

  22. Ersoy, B.: Description of flocculants used in cleaning of waste water of marble processing plant. In: Proceedings of 4th National Marble Symposium, Afyon (Turkey), pp. 449–462 (2003)

  23. El-Sayed, H.A.; Farag, A.B.; Kandeel, A.M.; Younes, A.A.; Yousef, M.M.: Characteristics of the marble processing powder waste at Shaq El-Thoaban industrial area, Egypt, and its suitability for cement manufacture. HBRC J. 14(2), 171–179 (2019). https://doi.org/10.1016/j.hbrcj.2016.06.002

    Article  Google Scholar 

  24. Çelik, M.Y.: Recycling of waste marble. MSc Thesis in Mining Engineering, Afyon Kocatepe University, Afyonkarahisar (1996)

  25. Akbulut, H.; Gürer, C.: The environmental effects of waste marble and possibilities of utilization and waste minimization by using in the road layers. In: Proceeding of the Fourth National Marble Symposium, Afyonkarahisar, December, pp. 371–378 (2003)

  26. Pilkington, A.; Maclaren, W.; Searl, A.; Davis, J.M.G.; Hurley, J.E.; Soutar, C.A.; Pairon, J.C.; Bignon, J.: Scientific opinion on the health effects of airborne crystalline silica. IOM report TM/95/08. Edinburgh, Institute of Occupational Medicine. Ref Type: Report (1996)

  27. Tjoe-Nij, E.; Burdoff, A.; Parker, J.; Attfield, M.; Van Duivenbooden, C.; Heederik, D.: Radiographic abnormalities among construction workers exposed to quartz containing dust. Occup. Environ. Med. 60(6), 410–417 (2003). https://doi.org/10.1136/oem.60.6.410

    Article  Google Scholar 

  28. Parks, C.G.; Conrad, K.; Cooper, G.S.: Occupational exposure to crystalline silica and autoimmune disease. Environ. Health Perspect. 107, 793–802 (1999). https://doi.org/10.1289/ehp.99107s5793

    Article  Google Scholar 

  29. Steenland, K.; Sanderson, W.T.: Lung cancer among industrial sand workers exposed to crystalline silica. Am. J. Epidemiol. 153(7), 695–703 (2001). https://doi.org/10.1093/aje/153.7.695

    Article  Google Scholar 

  30. Hnizdo, E.; Vallyathan, V.: Chronic obstructive pulmonary disease due to occupational exposure to silica dust: a review of epidemiological and pathological evidence. Occup. Environ. Med. 60, 237–243 (2002). https://doi.org/10.1136/oem.60.4.237

    Article  Google Scholar 

  31. Raju, B.; Rom, W.N.: Silica, Some Silicates, Coal Dust and Para-Aramid Fibrils: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 68. International Agency for Research on Cancer, Lyon (1998)

    Google Scholar 

  32. Singh, P.S.; Yadav, R.K.: Effect of marble dust on index properties of black cotton soil. Int. J. Sci. Eng. Technol. 3, 158–163 (2014)

    Google Scholar 

  33. Sabat, A.K.; Nanda, R.P.: Effect of marble dust on strength and durability of rice husk ash stabilised expansive soil. Int. J. Civ. Struct. Eng. 1(4), 939–948 (2011)

    Google Scholar 

  34. Saygili, A.: Use of waste marble dust for stabilization of clayey soil. Mater. Sci. 21(4), 601–606 (2015). https://doi.org/10.5755/j01.ms.21.4.11966

    Article  Google Scholar 

  35. Deboucha, S.; Sail, Y.; Ziani, H.: Effects of ceramic waste, marble dust, and cement in pavement sub-base layer. Geotech. Geol. Eng. 38, 3331–3340 (2020). https://doi.org/10.1007/s10706-020-01211-x

    Article  Google Scholar 

  36. Gourley, C.S.; Newill, D.; Shreiner, H.D.: Expansive soils: TRL’s research strategy. In: Proceedings of 1st International Symposium on Engineering Characteristics of Arid Soils, 6–7 July, London, pp. 247–260, Balkema, Rotterdam (1994)

  37. Estabragh, A.R.; Moghadas, M.; Javadi, A.A.: Effect of different types of wetting fluids on the behaviour of expansive soil during wetting and drying. Soils Found. 53(5), 617–627 (2013). https://doi.org/10.1016/j.sandf.2013.08.001

    Article  Google Scholar 

  38. Mokhtari, M.; Dehghani, M.: Swell–shrink behavior of expansive soils, damage and control. Electron. J. Geotech. Eng. 17, 2673–2682 (2012)

    Google Scholar 

  39. Day, R.W.: Foundation Engineering Handbook. ASCE Press, The McGraw-Hill Companies, New York (2006)

    Google Scholar 

  40. Giraldez, J.V.; Sposito, G.: A general soil volume change equation: II. Effect of load pressure. Soil Sci. Soc. Am. J. 47(3), 422–425 (1983). https://doi.org/10.2136/sssaj1983.03615995004700030006x

    Article  Google Scholar 

  41. Braudeau, E.; Costantini, J.M.; Bellier, G.; Colleuille, H.: New device and method for soil shrinkage curve measurement and characterization. Soil Sci. Soc. Am. J. 63(3), 525–535 (1999). https://doi.org/10.2136/sssaj1999.03615995006300030015x

    Article  Google Scholar 

  42. Boivin, P.; Garnier, P.; Tessier, D.: Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Sci. Soc. Am. J. 68(4), 1145–1153 (2004)

    Article  Google Scholar 

  43. Al-Mukhtar, M.; Lasledj, A.; Alcover, J.F.: Behavior and mineralogy changes in lime treated expansive soil at 50 °C. Appl. Clay Sci. 50(2), 199–203 (2010). https://doi.org/10.1016/j.clay.2010.07.022

    Article  Google Scholar 

  44. Tang, C.S.; Shi, B.; Liu, C.; Suo, W.B.; Gao, L.: Experimental characterization of shrinkage and desiccation cracking in thin clay layer. Appl. Clay Sci. 52(1), 69–77 (2011). https://doi.org/10.1016/j.clay.2011.01.032

    Article  Google Scholar 

  45. Khazaei, J.; Moayedi, H.: Soft expansive soil improvement by eco-friendly waste and quick lime. Arab. J. Sci. Eng. (2017). https://doi.org/10.1007/s13369-017-2590-3

    Article  Google Scholar 

  46. Khemissa, M.; Mahamedi, A.: Cement and lime mixture stabilization of an expansive overconsolidated clay. Appl. Clay Sci. 95, 104–110 (2014)

    Article  Google Scholar 

  47. Lindenmaier, F.; Zehe, E.; Helms, M.; Evdakov, O.; Ihringer, J.: Effect of soil shrinkage on runoff generation in micro and mesoscale catchments. In: Predictions in Ungauged Basins: Promise and Progress (Proceedings of Symposium S7 Held During the Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil, April 2005), pp. 305–317 (2006)

  48. Ross, G.J.: Relationships of specific surface area and clay content to shrink–swell potential of soils having different clay mineralogical compositions. Can. J. Soil Sci. 58(2), 159–166 (1978)

    Article  Google Scholar 

  49. Mitchell, J.K.; Soga, K.: Fundamentals of Soil Behavior. Wiley, New York (2005)

    Google Scholar 

  50. Achmad, F.; Nazmi, W.M.; Fauzi, U.J.: California bearing ratio (CBR) improvement of Kuantan clay subgrade by using reused material as stabilizer. In: 9th National Conference of the Indonesia Road Development Association (IRDA), Jakarta (2011)

  51. ASTM D 2487-00: Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). West Conshohocken, PA, USA (2013)

  52. Nalbantoğlu, Z.: Effectiveness of class C fly ash as an expansive soil stabilizer. Constr. Build. Mater. 18(6), 377–381 (2004). https://doi.org/10.1016/j.conbuildmat.2004.03.011

    Article  Google Scholar 

  53. Fırat, S.; Yılmaz, G.; Cömert, A.T.; Sümer, M.: Utilization of marble dust, fly ash and waste sand (silt–quartz) in road subbase filling materials. KSCE J. Civ. Eng. 16(7), 1143–1151 (2012). https://doi.org/10.1007/s12205-012-1526-4

    Article  Google Scholar 

  54. James, J.; Lakshmi, S.V.; Pandian, P.K.: Strength and index properties of phosphogypsum stabilized expansive soil. Int. J. Appl. Environ. Sci. 5(1), 2721–2731 (2014)

    Google Scholar 

  55. ASTM D 854: Standard test methods for specific gravity of soil solids by water pycnometer. West Conshohocken, PA, USA (2013)

  56. ASTM D 4318: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken, PA, USA (2013)

  57. ASTM D 698-07: Standard test methods for laboratory compaction characteristics of soil using standard effort. West Conshohocken, PA, USA (2013)

  58. BS 1377-2: Methods of test for soils for civil engineering purposes. Part 2: classification tests, BSI (1990)

  59. ASTM D 4546-14: Standard test methods for one-dimensional swell or collapse of soils. West Conshohocken, PA, USA (2014)

  60. ASTM D 2435-00: Standard test methods for one-dimensional consolidation properties of soils using incremental loading. West Conshohocken, PA, USA (2013)

  61. Holtz, R.D.; Kovacs, W.D.: An Introduction to Geotechnical Engineering. Prentice Hall Inc., New Jersey (1981)

    Google Scholar 

  62. Gürü, M.; Tekeli, S.; Akin, E.: Manufacturing of polymer matrix composite material using marble dust and fly ash. Key Eng. Mater. 336, 1353–1356 (2007). https://doi.org/10.4028/www.scientific.net/KEM.336-338.1353

    Article  Google Scholar 

  63. Ramadas, T.L.; Kumar N.D.; Aparna, G.: Swelling and strength characteristics of expansive soil treated with stone dust and fly Ash. In: Indian Geotechnical Conference-2010, GEOtrendz, 16–18 December, Bombay, pp. 557–560 (2010)

  64. Agrawal, V.; Gupta, M.: Expansive soils stabilization using marble dust. Int. J. Earth Sci. Eng. 4, 59–62 (2011)

    Google Scholar 

  65. Devarajan, D.; Sasikumar, A.: Evaluation of geotechnical properties of marble dust treated clayey soil. IJARTET 1, 17–22 (2014)

    Google Scholar 

  66. Bhavsar, S.N.; Patel, A.J.: Effect of waste material on swelling and shrinkage properties of clayey soil. IJAIEM 3, 200–206 (2014)

    Google Scholar 

  67. Chen, J.A.; Idusuyi, F.O.: Effect of waste ceramic dust (WCD) on index and engineering properties of shrink–swell soils. Int. J. Educ. Med. Technol. 1(8), 52–62 (2015)

    Google Scholar 

  68. Batman, A.: Investigation of the effect of crushed quartz sand on clay strength properties. PhD Thesis in Civil Engineering, Atatürk University, Erzurum (2015)

  69. Hasan, H.A.: Effect of fly ash on geotechnical properties of expansive soil. JEAD 16(2), 306–316 (2012)

    Google Scholar 

  70. Bhavsar, S.N.; Patel, A.J.: Analysis of swelling and shrinkage properties of expansive soil using brick dust as a stabilizer. Int. J. Emerg. Technol. Adv. Eng. 4(12), 303–308 (2014)

    Google Scholar 

  71. Day, R.W.: Expansion potential according to the uniform building code. J. Geotech. Geoenviron. 119(6), 1067–1071 (1993)

    Google Scholar 

  72. Abdulla, R.S.; Majeed, N.N.: Some physical properties treatment of expansive soil using marble waste powder. IJERT 3(1), 591–600 (2014)

    Google Scholar 

  73. Zorluer, I.; Muratoglu, I.: Effect of marble dust on consolidation characteristics of clay soils. In: International Symposium on Sustainable Development, pp. 514–517 (2010)

Download references

Acknowledgements

This paper is partly produced from the FEB 2017/10-11-YULTEP Project of Niğde Ömer Halisdemir University, Scientific Research Projects Unit. The authors also thank Niğde NİDAŞ Company for giving permission for the use of their laser diffraction device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdevs Uysal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivrikaya, O., Uysal, F., Yorulmaz, A. et al. The Efficiency of Waste Marble Powder in the Stabilization of Fine-Grained Soils in Terms of Volume Changes. Arab J Sci Eng 45, 8561–8576 (2020). https://doi.org/10.1007/s13369-020-04768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04768-0

Keywords

Navigation