Skip to main content
Log in

Wide-Area Measurement-Based Adaptive Backup Protection for Shunt Compensation Environment

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the localization issue associated with distance relay protecting a transmission line with static synchronous compensator (STATCOM) is discussed. Generally, distance relay is mal-operated due to the dynamic behaviour of STATCOM during its inductive and capacitive modes of operation. Because, STATCOM operation creates the problem of correct measurement of fault distance and is responsible of under-reach and over-reach of distance relay. Furthermore, high fault resistance is also the reason of under-reach along with STATCOM operation. To overcome aforementioned challenges, an adaptive wide-area backup protection scheme (WABPS) is addressed which compares the calculated impedance and referenced impedance. Calculated impedance is the difference between impedance measured by relay and impedance contributed by fault resistance. Referenced impedance is the sum of fault impedance and impedance contributed by STATCOM. If calculated impedance is less than referenced impedance, then the relay will generate a trip signal. Proposed WABPS is inherent directional and provides information about fault detection, fault distance, and fault resistance during dynamic operation of STATCOM. The performance of the proposed WABPS is evaluated using technology of synchronize phasor measurement and communication channel. A 230 kV, 50 Hz system with a 24-pulse STATCOM is simulated and validated using PSCAD/EMTDC software package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hingorani, N.G.; Gyugyi, L.: Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. Wiley, New York (1999)

    Book  Google Scholar 

  2. Shahnia, F.; Rajakaruna, S.; Ghosh, A.: Static compensators (STATCOMs) in power systems. In: Power Systems. Springer, Berlin (2014)

  3. Ramirez, D.; Martinez, S.; Blazquez, F.; Carrero, C.: Use of STATCOM in wind farms with fixed-speed generators for grid code compliance. Renew. Energy 37, 202–212 (2012)

    Article  Google Scholar 

  4. Laouer, M.; Mekkaoui, A.; Younes, M.: STATCOM and Capacitor Banks in a fixed-speed wind farm. TMREES14. Energy Proc. 50, 882–892 (2014)

    Article  Google Scholar 

  5. Gupta, O.H.; Tripathy, M.: An innovative pilot relaying scheme for shunt-compensated line. IEEE Trans. Power Deliv. 30(3), 1439–1448 (2015)

    Article  Google Scholar 

  6. Arroudi, K.E.; Joos, G.; McGillis, D.T.: Operation of impedance protection relays with the STATCOM. IEEE Trans. Power Deliv. 17(2), 381–387 (2002)

    Article  Google Scholar 

  7. Singh, A.R.; Patne, N.R.; Kale, V.S.: Adaptive distance protection setting in presence of mid-point STATCOM using synchronized measurement. Int. J. Electr. Power Energy Syst. 67, 252–260 (2015)

    Article  Google Scholar 

  8. Manori, A.; Tripathy, M.; Gupta, H.O.: SVM based zonal setting of Mho relay for shunt compensated transmission line. Int. J. Electr. Power Energy Syst. 78, 422–428 (2016)

    Article  Google Scholar 

  9. Kazemi, A.; Jamali, S.; Shateri, H.: Effects of STATCOM on distance relay tripping characteristic. In: IEEE/PES Transactions and Distribution Conference and Exhibition: Asia and Pacific, pp. 1–6 (2005)

  10. Bo, Z.Q.: Adaptive non-communication protection for power lines bo scheme 1—the delayed operation approach. IEEE Trans. Power Deliv. 17(1), 85–91 (2002)

    Article  Google Scholar 

  11. Albasri, F.A.; Sidhu, T.S.; Varma, R.K.: Impact of shunt-FACTS on distance protection of transmission lines. In: IEEE Conference on Power System, Clemson, SC, USA, 14–17 March 2006, pp. 249–256 (2006)

  12. Sidhu, T.S.; Varma, R.K.; Gangadharan, P.K.; Albasri, F.A.; Ortiz, G.R.: Performance of distance relays on shunt—FACTS compensated transmission lines. IEEE Trans. Power Deliv. 20(3), 1837–1845 (2005)

    Article  Google Scholar 

  13. Albasri, F.A.; Sidhu, T.S.; Varma, R.K.: Performance comparison of distance protection schemes for shunt-FACTS compensated transmission lines. IEEE Trans. Power Deliv. 22(4), 2116–2125 (2007)

    Article  Google Scholar 

  14. Ree, J.D.L.; Centeno, V.; Thorp, J.S.; Phadke, A.G.: Synchronized phasor measurement applications in power systems. IEEE Trans. Smart Grid 1(1), 20–27 (2010)

    Article  Google Scholar 

  15. Phadke, A.G.; Thorp, J.S.: Synchronized Phasor Measurements and Their Applications. Springer, New York (2008)

    Book  Google Scholar 

  16. Sarangi, S.; Pradhan, A.K.: Synchronised data-based adaptive backup protection for series compensated line. IET Gener. Transm. Distrib. 8(12), 1979–1986 (2014)

    Article  Google Scholar 

  17. Kundu, P.; Pradhan, A.K.: Online identification of protection element failure using wide area measurements. IETGener. Transm. Distrib. 9(2), 115–123 (2015)

    Article  Google Scholar 

  18. Guzman, A.; Samineni, S.; Bryson, M.: Protective Relay Synchrophasor Measurements During Fault Conditions. Schweitzer Engineering Laboratories (2005) [Available online]. https://cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6214_ProtectiveRelay_AG_20050920.pdf

  19. Eissa, M.M.; Masoud, M.E.; Elanwar, M.M.M.: A novel back up wide area protection technique for power transmission grids using phasor measurement unit. IEEE Trans. Power Deliv. 25(1), 270–278 (2010)

    Article  Google Scholar 

  20. Dash, P.K.; Moirangthem, J.; Das, S.: A new time–frequency approach for distance protection in parallel transmission lines operating with STATCOM. Int. J. Electr. Power Energy Syst. 61, 606–619 (2014)

    Article  Google Scholar 

  21. Khederzadeh, M.; Ghorbani, A.: STATCOM modeling impacts on performance evaluation of distance protection of transmission lines. Int. Trans. Electr. Energy Syst. 21, 2063–2079 (2011). https://doi.org/10.1002/etep.541

    Article  Google Scholar 

  22. Khederzadeh, M.; Ghorbani, A.: STATCOM/SVC impact on the performance of transmission line distance protection. Int. Trans. Electr. Energy Syst. 6, 525–533 (2011). https://doi.org/10.1002/tee.20691

    Article  Google Scholar 

  23. Ma, J.; Xiang, X.; Li, P.; Deng, Z.; Thorp, J.S.: Adaptive distance protection scheme with quadrilateral characteristic for extremely high-voltage/ultra-high-voltage transmission line. IET Gener. Transm. Distrib. 11(7), 1624–1633 (2017)

    Article  Google Scholar 

  24. Navalkar, P.V.; Soman, S.A.: Secure remote backup protection of transmission lines using synchrophasors. IEEE Trans. Power Deliv. 26(1), 87–96 (2011)

    Article  Google Scholar 

  25. Ma, J.; Li, J.; Thorp, J.S.; Arana, A.J.; Yang, Q.; Phadke, A.G.: A fault steady state component-based wide area backup protection algorithm. IEEE Trans. Smart Grid. 2(3), 468–475 (2011)

    Article  Google Scholar 

  26. He, Z.; Zhang, Z.; Chen, W.; Malik, O.P.; Yin, X.: Wide-area backup protection algorithm based on fault component voltage distribution. IEEE Trans. Power Deliv. 26(4), 2752–2760 (2011)

    Article  Google Scholar 

  27. Schweitzer, E.O.; Whitehead, D.E.: Real-time power system control using synchrophasors. In: IEEE 61st Annual Conference for Protective Relay Engineers, 2008, College Station, TX, USA, pp. 1–11 (2008)

  28. Espinoza, J.V.; Guzmán, A.; Calero, F.; Mynam, M.V.; Palma, E.: Wide-area measurement and control scheme maintains central america’s power system stability. In: Wide-Area Protection and Control Systems: A Collection of Technical Papers Representing Modern Solutions (2017)

  29. Singh, A.R.; Patne, N.R.; Kale, V.S.; Khadke, P.: Digital impedance pilot relaying scheme for STATCOM compensated TL for fault phase classification with fault location. IET Gener. Transm. Distrib. 11(10), 2586–2598 (2017)

    Article  Google Scholar 

  30. Guan, R.; Xue, Y.; Zhang, X.-P.: Advanced RTDS-based studies of the impact of STATCOM on feeder distance protection. J. Eng. 2018(15), 1038–1042 (2018)

    Article  Google Scholar 

  31. Power System Relaying Committee, IEEE Guide for Breaker Failure Protection of Power Circuit Breakers, IEEE Std C37.119™-2016 (Revision of IEEE Std C37.119-2005). [Available online]. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7509575

  32. Werstiuk, C.: Testing breaker failure schemes: valence electrical training services. In: 36 Annual Hands-On Relay School, Pullman, Washington, 2019. [Available online]. https://www.eiseverywhere.com/file_uploads/1b859c9e3ffa064bfe2de78b83d380f0_TestingBreakerFailureSchemes-ChrisWerstiuk.pdf

  33. Power Grid Corporation of India Ltd.: A report on unified real time dynamic state measurement (URTDSM), Gurgaon, India, 200/5/2012/SP&PA (2012). [Online]. Available: www.cea.nic.in

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Kumar.

Appendix

Appendix

1.1 Source Parameter

ZS1 = 2ej88 Ω and ZS0 = 6ej88 Ω.

1.2 System Parameters

Z1L = 0.03293 + 0.3184 Ω/km, Shunt Xc1 = 0.2802 MΩ km.

Z0L = 0.2587 + 1.174 Ω/km, Shunt Xc0 = 0.40809 MΩ km.

Line length of Line PS and Line SR = 300 km, and Line-RT = 200 km.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Jena, P. Wide-Area Measurement-Based Adaptive Backup Protection for Shunt Compensation Environment. Arab J Sci Eng 46, 843–855 (2021). https://doi.org/10.1007/s13369-020-04762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04762-6

Keywords

Navigation