Skip to main content
Log in

Numerical Simulation of True 3D Rock Tests with Classical and New Three-Invariant Constitutive Models Focusing on the End Effects

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

True 3D rock tests have revealed more complex (than axisymmetric conventional tests) constitutive behaviors of geomaterials which depend on the Lode angle and intermediate principal stress \(\sigma_{2}\). These tests, however, are subject to significant errors related to the end effects. It is important to understand which part of the stress–strain measurements is due to the actual rock properties, and which is caused by the end friction. We perform 3D finite-difference numerical simulations of true 3D tests approaching the real test conditions as closely as possible. Two constitutive models are used, one is the classical Mohr–Coulomb model, and the other is a recently developed 3-invariant 3ICM model calibrated with true 3D data for Castlegate sandstone. The results obtained with both models strongly depend on the end friction coefficient or friction angle \(\phi\) (notably along the \(\sigma_{2}\)-normal specimen faces), but the 3ICM model fits the data much better. At each constant \(\sigma_{3}\) and \(\phi > 0\), the measured (calculated) specimen model strength grows with \(\sigma_{2}\) increase, the growth rate being proportional to \(\phi\). The \(\phi\) increase also leads to an increase in the measured (apparent) stiffness. These results suggest that the experimentally defined typical arc-shaped curves \(\sigma_{1} (\sigma_{2}\)) at constant \(\sigma_{3}\) are progressively uplifted (with respect to real/intrinsic curves) when \(\sigma_{2}\) varies from \(\sigma_{3}\) to \(\sigma_{1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mogi, K.: Fracture and flow of rocks under high triaxial compression. J. Geophys. Res. 76, 1255–1269 (1971)

    Google Scholar 

  2. Haimson, B.C.; Chang, C.: A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int. J. Rock Mech. Min. Sci. 37, 285–296 (2000)

    Google Scholar 

  3. Haimson, B.C.: Consistent trends in the true triaxial strength and deformability of cores extracted from ICDP deep scientific holes on three continents. Tectonophysics 503, 45–51 (2011)

    Google Scholar 

  4. Sriapai, T.; Walsri, C.; Fuenkajorn, K.: True-triaxial compressive strength of Maha Sarakham salt. Int. J. Rock Mech. Min. Sci. 61, 256–265 (2013)

    Google Scholar 

  5. Ingraham, M.D.; Issen, K.A.; Holcomb, D.J.: Response of Castlegate sandstone to true triaxial states of stress. J. Geophys. Res. 118, 536–552 (2013)

    Google Scholar 

  6. Ma, X.D.; Haimson, B.C.: Failure characteristics of two porous sandstones subjected to true triaxial stresses. J. Geophys. Res. 121, 6477–6498 (2016)

    Google Scholar 

  7. Feng, X.T.; Zhang, X.W.; Kong, R.; Wang, G.: A novel Mogi type true triaxial testing apparatus and its use to obtain complete stress–strain curves of hard rocks. Rock Mech. Rock Eng. 49, 1649–1662 (2016)

    Google Scholar 

  8. Ma, X.D.; Rudnicki, J.W.; Haimson, B.C.: Failure characteristics of two porous sandstones subjected to true triaxial stresses: applied through a novel loading path. J. Geophys. Res. 122, 2525–2540 (2017)

    Google Scholar 

  9. Feng, X.T.; Kong, R.; Zhang, X.W.; Yang, C.X.: Experimental study of failure differences in hard rock under true triaxial compression. Rock Mech. Rock Eng. 52, 2109–2122 (2019)

    Google Scholar 

  10. Zhang, S.H.; Wu, S.C.; Zhang, G.: Strength and deformability of a low-porosity sandstone under true triaxial compression. Int. J. Rock Mech. Min. Sci. 127, 104204 (2020)

    Google Scholar 

  11. Du, K.; Yang, C.Z.; Su, R.; Tao, M.; Wang, S.F.: Failure properties of cubic granite, marble, and sandstone specimens under true triaxial stress. Int. J. Rock Mech. Min. Sci. 130, 104309 (2020)

    Google Scholar 

  12. Xu, Y.H.; Cai, M.; Zhang, X.W.; Feng, X.T.: Influence of end effect on rock strength in true triaxial compression test. Can. Geotech. J. 54, 862–880 (2017)

    Google Scholar 

  13. Willam, K.J.; Warnke, E.P.: Constitutive models for the triaxial behavior of concrete. IABSE Proc. 19, 1–30 (1975)

    Google Scholar 

  14. Van Eekelen, H.A.M.: Isotropic yield surfaces in three dimensions for use in soil mechanics. Int. J. Numer. Anal. Met. 4, 98–101 (1980)

    MATH  Google Scholar 

  15. Hsieh, S.S.; Ting, E.C.; Chen, W.F.: A plastic-fracture model for concrete. Int. J. Solids Struct. 18, 181–197 (1982)

    MATH  Google Scholar 

  16. Desai, C.S.; Salami, M.R.: A constitutive model and associated testing for soft rock. Int. J. Rock Mech. Min. Sci. 24, 299–307 (1987)

    Google Scholar 

  17. Lade, P.V.; Kim, M.K.: Single hardening constitutive model for frictional materials III: comparisons with experimental data. Comput. Geotech. 6, 31–47 (1988)

    Google Scholar 

  18. Li, M.H.; Yin, G.Z.; Xu, J.; Li, W.P.; Song, Z.L.; Jiang, C.B.: A novel true triaxial apparatus to study the geomechanical and fluid flow aspect of energy exploitations in geological formations. Rock Mech. Rock Eng. 49, 4647–4659 (2016)

    Google Scholar 

  19. Cai, M.: Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries-insight from numerical modeling. Int. J. Rock Mech. Min. Sci. 45, 763–772 (2008)

    Google Scholar 

  20. Shi, L.; Li, X.C.: Analysis of end friction effect in true triaxial test. Rock Soil Mech. 30, 1159–1164 (2009)

    Google Scholar 

  21. Pan, P.Z.; Feng, X.T.; Hudson, J.A.: The influence of the intermediate principal stress on rock failure behavior: a numerical study. Eng. Geol. 124, 109–118 (2012)

    Google Scholar 

  22. Chemenda, A.I.; Mas, D.: Dependence of rock properties on the Lode angle: experimental data, constitutive model, and bifurcation analysis. J. Mech. Phys. Solids 96, 477–496 (2016)

    MathSciNet  Google Scholar 

  23. Peng, S.D.: Stresses with inelastic circular cylinders loaded uniaxially and triaxially. Int. J. Rock Mech. Min. Sci. 8, 399–432 (1971)

    Google Scholar 

  24. Brady, B.T.: An exact solution to the radially end-constrained circular cylinder under triaxial loading. Int. J. Rock Mech. Min. Sci. 1971(8), 165–178 (1969)

    Google Scholar 

  25. Drescher, A.; Vardoulakis, I.: Geometric softening in triaxial tests on granular material. Géotechnique 32, 291–303 (1982)

    Google Scholar 

  26. Labuz, J.F.; Bridell, J.M.: Reducing frictional constraint in compression testing through lubrication. Int. J. Rock Mech. Min. Sci. 30, 451–455 (1993)

    Google Scholar 

  27. Pellegrino, A.; Sulem, J.; Barla, G.: The effects of slenderness and lubrication on the uniaxial behavior of a soft limestone. Int. J. Rock Mech. Min. Sci. 34, 333–340 (1997)

    Google Scholar 

  28. Albert, R.A.; Rudnicki, J.W.: Finite element simulations of Tennessee marble under plane strain laboratory testing: effects of specimen-platen friction on shear band onset. Mech. Mater. 33, 47–60 (2001)

    Google Scholar 

  29. Chemenda, A.I.: Three-dimensional numerical modeling of hydrostatic tests of porous rocks in a triaxial cell. Int. J. Rock Mech. Min. Sci. 76, 33–43 (2015)

    Google Scholar 

  30. Föppl, A.: Abhangigkeit der Bruchgefahr von der Art des Spannungszustandes. Mitth. Mech. Tech. Lab K. Tech. Hochsch München 27, 1–35 (1900)

    Google Scholar 

  31. Boyd, J.; Robertson, B.P.: The friction properties of various lubricants at high pressure. Trans. ASME 67, 51–59 (1945)

    Google Scholar 

  32. Allen, C.M.; Drauglis, E.: Boundary layer lubrication. Wear 14, 365–384 (1969)

    Google Scholar 

  33. Bowers, R.C.; Clinton, W.C.; Zisman, W.A.: Frictional behavior of polyethylene, polytetrafluoroethylene and halogenated derivatives. Lubr. Eng. 9, 204–219 (1953)

    Google Scholar 

  34. Wawersik, W.R.: Detailed Analysis of Rock Failure in Laboratory Compression Tests. University of Minnesota, Minnesota (1968)

    Google Scholar 

  35. Van Vliet, M.R.A.; Van Mier, J.G.M.: Experimental investigation of concrete fracture under uniaxial compression. Mech. Cohes-Frict. Mater. 1, 115–127 (1996)

    Google Scholar 

  36. Feng, X.T.; Zhang, X.W.; Yang, C.X.; Kong, R.; Liu, X.Y.; Peng, S.: Evaluation and reduction of the end friction effect in true triaxial tests on hard rocks. Int. J. Rock Mech. Min. Sci. 97, 144–148 (2017)

    Google Scholar 

  37. Niwa, Y.; Koyanagi, W.; Kobayashi, S.: Failure criterion of light weight concrete subjected to triaxial compression. Trans. Jpn. Soc. Civ. Eng. 147, 28–35 (1967)

    Google Scholar 

  38. Hawkes, I.; Mellor, M.: Uniaxial testing in rock mechanics laboratories. Eng. Geol. 4, 179–285 (1970)

    Google Scholar 

  39. Li, X.: Permeability Change in Sandstones Under Compressive Stress Conditions. Ibaraki University, Mito (2001)

    Google Scholar 

  40. Bowden, F.P.: Friction. Nature 166, 330–334 (1950)

    Google Scholar 

  41. Gaffney, E.: Measurements of dynamic friction between rock and steel. Defense Nuclear Agency (1976)

  42. Liang, C.Y.; Zhang, Q.B.; Li, X.; Xin, P.: The effect of specimen shape and strain rate on uniaxial compressive behavior of rock material. B. Eng. Geol. Environ. 75, 1669–1681 (2015)

    Google Scholar 

  43. Bridell, J.M.: Reducing Frictional Constraint in Compression Testing Through Lubrication. University of Minnesota, Minnesota (1991)

    Google Scholar 

  44. Itasca Consulting Group: FLAC 3D (fast Lagrangian analysis of continua in 3-dimensions) 5.0 manual (2013)

  45. Mas, D.; Chemenda, A.I.: An experimentally constrained constitutive model for geomaterials with simple friction–dilatancy relation in brittle to ductile domains. Int. J. Rock Mech. Min. Sci. 77, 257–264 (2015)

    Google Scholar 

  46. Mas, D.; Chemenda, A.I.: Dilatancy factor constrained from the experimental data for rocks and rock-type material. Int. J. Rock Mech. Min. Sci. 67, 136–144 (2014)

    Google Scholar 

  47. Fan, P.X.; Li, Y.; Zhao, Y.T.; Dong, L.; Ma, J.L.: End friction effect of Mogi type true-triaxial test apparatus. Chin. J. Rock Mech. Eng. 36, 2720–2730 (2017)

    Google Scholar 

  48. Xu, Y.H.; Cai M.: Numerical simulation of end constraint effect on post-peak behaviors of rocks in uniaxial compression. In: 49th US Rock Mechanics/Geomechanics Symposium. San Francisco, USA (2015)

  49. Kumar, S.; Mukhopadhyay, T.; Waseem, S.A.; Singh, B.; Iqbal, M.A.: Effect of platen restraint on stress–strain behavior of concrete under axial compression: a comparative study. Strength Mater. 48, 592–602 (2016)

    Google Scholar 

Download references

Acknowledgements

The first author thanks China Scholarship Council for the support to continue his PhD thesis in France and Julien Ambre for useful discussions and help.

Funding

This study was financially supported by the visiting scholor project funded by State Key Laboratory of Coal Mine Disaster Dynamics and Control (No. 2011DA105287-FW201901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chemenda, A.I. Numerical Simulation of True 3D Rock Tests with Classical and New Three-Invariant Constitutive Models Focusing on the End Effects. Arab J Sci Eng 45, 9367–9378 (2020). https://doi.org/10.1007/s13369-020-04750-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04750-w

Keywords

Navigation