Development of Nano-SnO2 and SnO2:V2O5 Thin Films for Selective Gas Sensor Devices


Pure and doped SnO2 with V2O5 nanopowders were synthesized via sol–gel method using different V2O5 ratios. Novel thin films of SnO2:V2O5 were thermally vacuum deposited from the nanopowders and utilized for gas sensor devices to detect volatile organic compounds hazardous gases. The morphological and crystalline structure, textural properties, functional groups, optical properties and thermal behavior were investigated by FESEM, XRD, HRTEM, surface area BET, FTIR and UV–Visible spectroscopy, respectively, for both the nanopowders, and thin films. From XRD patterns, the average calculated crystallite sizes decreased from 7.8 nm to 4.5 nm as the V2O5 concentration was varied from 0 to 10%. FESEM and HRTEM show that all the synthesized nanomaterials composed of mesoporous networks of aggregated nanoparticles that almost spherical. Thus, V2O5 doped SnO2 nanopowders synthesized by sol–gel method exhibited the structural and textural features required to be used as an active area for gas sensor devices. The effect of various doping weight amounts (1, 5 and 10 wt%) of V2O5 as the dopant element enhanced the gas response time and sensitivity. The electrical behavior of the sensors was determined by measuring the resistance of two deposited platinum electrodes for sensor’s devices for different kinds of gases (LPG, H2, NH3 and acetone) at different temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Schieweck, A.; Uhde, E.; Salthammer, T.; Salthammer, L.; Morawska, L.; Mazaheri, M.; Kumar, P.: Smart homes and the control of indoor air quality. Renew. Sustain. Energy Rev. 94, 705–718 (2018)

    Article  Google Scholar 

  2. 2.

    Laref, R.; Losson, E.; Sava, A.; Siadat, M.: Support vector machine regression for calibration transfer between electronic noses dedicated to air pollution monitoring. Sensors (Basel) 18, 3716 (2018)

    Article  Google Scholar 

  3. 3.

    Montero-Montoya, R.; López-Vargas, R.; Arellano-Aguilar, O.: Volatile organic compounds in air: sources, distribution, exposure and associated illnesses in children. Ann. Glob. Health 84, 225–238 (2018)

    Article  Google Scholar 

  4. 4.

    Jalal, A.H.; Alam, F.; Roychoudhury, S.; Umasankar, Y.; Pala, N.; Bhansali, S.: Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 3, 1246–1263 (2018)

    Article  Google Scholar 

  5. 5.

    Guan, X.; Wang, Y.; Luo, P.; Yu, Y.; Chen, D.: Incorporating N atoms into SnO2 nanostructure as an approach to enhance gas sensing property for acetone. Nanomaterials (Basel) 9, 445 (2019)

    Article  Google Scholar 

  6. 6.

    Zhang, X.; Kang, X.; Cui, W.; Zhang, Q.; Zheng, Z.; Cui, X.: Floral and lamellar europium (III)-based metal–organic framework as the high sensitivity luminescence sensor for acetone. New J. Chem. 43, 8363 (2019)

    Article  Google Scholar 

  7. 7.

    Shokry Hassan, H.; Elkady, M.F.: Semiconductor nanomaterials for gas sensor applications. In: Dasgupta, N., Ranjan, S., Lichtfouse, E. (eds.) Environmental Nanotechnology, vol. 3, pp. 305–355. Springer, Berlin (2020)

    Google Scholar 

  8. 8.

    Zhou, T.; Han, H.; Liu, P.; Xiong, J.; Tian, F.; Li, X.: Microbial fuels cell-based biosensor for toxicity detection: a review. Sensors (Basel) 10, 2230 (2017)

    Article  Google Scholar 

  9. 9.

    Hassan, H.S.; Elkady, M.F.; Farghali, A.A.; Salem, A.M.; Abd El-Hamid, A.I.: Fabrication of novel magnetic zinc oxide cellulose acetate hybrid nano-fiber to be utilized for phenol decontamination. J. Taiwan Inst. Chem. Eng. 78, 307–316 (2017)

    Article  Google Scholar 

  10. 10.

    Reddy, C.V.; Babu, B.; Vattikuti, S.P.; Ravikumar, R.V.; Shim, J.: Structural and optical properties of vanadium doped SnO2 nanoparticles with high photocatalytic activities. J. Lumin. 179, 26–34 (2016)

    Article  Google Scholar 

  11. 11.

    Shokry Hassan, H.; Kashyout, A.B.; Morsi, I.; Nasser, A.A.A.; Abuklill, H.: Development of polypyrrole coated copper nanowires for gas sensor application. Sens Biosens. Res. 5, 50–54 (2015)

    Google Scholar 

  12. 12.

    Feng, C.; Li, X.; Wang, C.; Sun, Y.; Zheng, J.; Lu, G.: Facile synthesis benzene sensor based on V2O5-doped SnO2 nanofibers. RSC Adv. 4, 47549–47555 (2014)

    Article  Google Scholar 

  13. 13.

    Shokry Hassan, H.; Kashyout, A.B.; Morsi, I.; Nasser, A.A.A.; Raafat, A.: Fabrication and characterization of gas sensor micro-arrays. Sens Biosens. Res. 1, 34–40 (2014)

    Google Scholar 

  14. 14.

    Haridas, D.; Chowdhuri, A.; Sreenivas, K.; Gupta, V.: Enhanced LPG response characteristics of SnO2 thin film based sensors loaded with Pt clusters. In: Proceedings of 3rd International Conference on Sensing Technology ICST, pp. 418–421 (2008).

  15. 15.

    Lorenz, H.; Zhao, Q.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Klötzer, B.; Rameshan, C.; Penner, S.: Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM. Mater. Chem. Phys. 122, 623–629 (2010)

    Article  Google Scholar 

  16. 16.

    Wang, L.; Wang, Y.; Yu, K.; Wang, Sh; Zhang, Y.; Wei, Ch: A novel low temperature gas sensor based on Pt-decorated hierarchical 3D SnO2 nanocomposites. Sens. Actuators B Chem. 232, 91–101 (2016)

    Article  Google Scholar 

  17. 17.

    Wang, Z.; Jia, Z.; Li, Q.; Zhang, X.; Sun, W.; Sun, J.; Liu, B.; Ha, B.: The Enhanced NO2 sensing properties of SnO2 nanoparticles/reduced graphene oxide composite. J. Colloid Interface Sci. 235, 228–237 (2019)

    Google Scholar 

  18. 18.

    Shanmugam, M.; Alsalme, A.; Alghamdi, A.; Jayavel, R.: Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight. ACS Appl. Mater. Interfaces 7, 14905–14911 (2015)

    Article  Google Scholar 

  19. 19.

    Alam, M.M.; Abdullah, M.A.; Mohammed, M.R.: Fabrication of phenylhydrazine sensor with V2O5 doped ZnO nanocomposites. Mater. Chem. Phys. 243, 12265 (2020)

    Article  Google Scholar 

  20. 20.

    Dhayal Raj, A.; Mangalaraj, D.; Ponpandian, N.; Yi, J.: Gas sensing properties of chemically synthesized V2O5 Thin film. Adv. Mater. Res. 123–125, 683–686 (2010)

    Article  Google Scholar 

  21. 21.

    Yuliarto, B.; Gumilar, G.; Septiani, N.L.W.: SnO2 nanostructure as pollutant gas sensors: synthesis, sensing performances, and mechanism. Adv. Mater. Sci. Eng. 2015, 1–14 (2015)

    Article  Google Scholar 

  22. 22.

    Mousavi, M.; Yazdi, S.T.: Photoconductivity in nanostructured sulfur-doped V2O5 thin films. Mod. Phys. Lett. B 30, 1650151 (2016)

    Article  Google Scholar 

  23. 23.

    Schneider, K.; Lubecka, M.; Czapla, A.: VOx thin films for gas sensor applications. Procedia Eng. 120, 1153–1157 (2015)

    Article  Google Scholar 

  24. 24.

    Shokry Hassan, H.; Kashyout, A.B.; Morsi, I.; Nasser, A.A.A.; Raafat, A.: Fabrication and characterization of gas sensor nano-arrays. AIP Conf. Proc. 1653, 020042 (2015)

    Article  Google Scholar 

  25. 25.

    Panes-Ruiz, L.A.; Shaygan, M.; Fu, Y.; Liu, Y.; Khavrus, V.; Oswald, S.; Gemming, T.; Baraban, L.; Bezugly, V.; Cuniberti, G.: Toward highly sensitive and energy efficient ammonia gas detection with modified single-walled carbon nanotubes at room temperature. ACS Sens. 3, 79–86 (2018)

    Article  Google Scholar 

  26. 26.

    Epifani, M.; Kaciulis, S.; Mezzi, A.; Altamura, D.; Giannini, C.; Díaz, R.; Force, C.; Genç, A.; Arbiol, J.; Siciliano, P.; Comini, E.; Concina, I.: Corrigendum: inorganic photocatalytic enhancement: activated RHB photodegradation by surface modification of SnO2 nanocrystals with V2O5-like species. Sci. Rep. 7, 46855 (2017)

    Article  Google Scholar 

  27. 27.

    Sujatha, K.; Seethalakshmi, T.; Shanmugasundaram, O.L.: Synthesis, characterization of nano tin oxide via co-precipitation method. Nanotechnol. Res. Pract. 11, 98–105 (2016)

    Google Scholar 

  28. 28.

    Bhati, V.S.; Sheela, D.; Roul, B.; Raliya, R.; Biswas, P.; Kumar, M.; Roy, M.S.; Nanda, K.K.; Krupanidhi, S.B.; Kumar, M.: NO2 gas sensing performance enhancement based on reduced graphene oxide decorated V2O5 thin films. Nanotechnology 30, 224001 (2019)

    Article  Google Scholar 

  29. 29.

    Schneider, K.; Maziarz, W.: V2O5 thin films as nitrogen dioxide sensors. Sensors (Basel) 12, 4177 (2018)

    Article  Google Scholar 

  30. 30.

    Mehrabi, P.; Hui, J.; Janfaza, S.; O’Brien, A.; Tasnim, N.; Najjaran, H.; Hoorfar, M.: Fabrication of SnO2 composite nanofiber based gas sensor using the electrospinning method for tetrahydrocannabinol (THC) detection. Micromechanics 11, 1–8 (2020)

    Google Scholar 

  31. 31.

    Bhagwat, A.D.; Sawant, S.S.; Ankamwar, B.G.; Mahajan, ChM: Synthesis of nanostructured tin oxide (SnO2) powders and thin films by sol–gel method. J. Nano- Electron/ Phys. 7, 04037 (2015)

    Google Scholar 

  32. 32.

    Soltan, W.B.; Lassoued, M.S.; Ammar, S.; Toupance, T.: Vanadium doped SnO2 nanoparticles for photocatalytic degradation of methylene blue. J. Mater. Sci.: Mater. Electron. 78, 365–372 (2016)

    Google Scholar 

  33. 33.

    Liang, L.Y.; Liu, Z.M.; Cao, H.T.; Pan, X.Q.: Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method. ACS Appl. Mater. Interfaces 28, 15834 (2017)

    Google Scholar 

  34. 34.

    Xiong, Y.; Lu, W.; Ding, D.; Zhu, L.; Li, X.; Ling, C.; Xue, Q.: Enhanced room temperature oxygen sensing properties of LaOCl–SnO2 hollow spheres by UV light illumination. ACS Sens. 2, 679–686 (2017)

    Article  Google Scholar 

  35. 35.

    Garje, A.D.; Aiyer, R.C.: Effect of decomposition temperature on electrical and gas sensing properties of nano SnO2 Based thick film sensors. Sens. Lett. 4, 380–387 (2006)

    Article  Google Scholar 

  36. 36.

    Kashyout, A.B.; Soliman, H.M.A.; Shokry Hassan, H.; Abousehly, A.M.: Fabrication of ZnO and ZnO: Sb nanoparticles for gas sensor applications. J. Nanomater. 2010, ID 341841, 8 (2012)

  37. 37.

    Nehru, L.C.; Swaminathan, V.; Sanjeeviraja, C.: Photoluminescence studies on nanocrystalline tin oxide powder for optoelectronic devices. Am. J. Mater. Sci. 2, 6–10 (2012)

    Article  Google Scholar 

  38. 38.

    Hargittai, I.; Hargittai, M.: Electron diffraction theory and methods. In: Encyclopedia of Spectroscopy and Spectrometry, pp. 461–465. Elsevier Ltd. (2010)

  39. 39.

    Qi, Q.; Wang, P.P.; Zhao, J.; Feng, L.L.; Zhou, L.J.; Xuan, R.F.; Liu, Y.P.; DongLi, G.: SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties. Sens. Actuators B Chem. 194, 440–446 (2014)

    Article  Google Scholar 

  40. 40.

    ALOthman, Z.A.: A review: fundamental aspects of silicate mesoporous materials. Materials (Basel) 5, 2874–2902 (2012)

    Article  Google Scholar 

  41. 41.

    Morsi, R.E.; Mohamed, R.S.: Nanostructured mesoporous silica: Influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake. R. Soc. Open Sci. 5, 172021 (2018)

    Article  Google Scholar 

  42. 42.

    Ba, H.; Luo, J.; Liu, Y.; Viet, C.D.; Tuci, G.; Giambastiani, G.; Nhut, J.M.; Dinh, L.N.; Ersen, O.; ShengSu, D.; Pham-Huu, C.: Macroscopically shaped monolith of nanodiamonds @ nitrogen-enriched mesoporous carbon decorated SiC as a superior metal-free catalyst for the styrene production. Appl. Catal. B Environ. 200, 343–350 (2017)

    Article  Google Scholar 

  43. 43.

    Ben Soltan, W.; Lassoued, M.S.; Ammar, S.; Toupance, T.: Vanadium doped SnO2 nanoparticles for photocatalytic degradation of methylene blue. J. Mater. Sci.: Mater. Electron. 28, 15826–15834 (2017)

    Google Scholar 

  44. 44.

    Mazloom, J.; Ghodsi, F.E.; Golmojdeh, H.: Synthesis and characterization of vanadium doped SnO2 diluted magnetic semiconductor nanoparticles with enhanced photocatalytic activities. J. Alloys Compd. 639, 393–399 (2015)

    Article  Google Scholar 

  45. 45.

    Shokry Hassan, H.: Role of preparation technique in the morphological structures of innovative nano-cation exchange. J. Mater. Sci. Technol. 8, 2854–2864 (2019)

    Google Scholar 

  46. 46.

    Nandan, B.; Venugopal, B.; Amirthapandian, S.; Panigrahi, B.K.; Thangadurai, P.: Effect of Pd ion doping in the band gap of SnO2 nanoparticles: Structural and optical studies. J. Nanopart. Res. 15, 1–11 (2013)

    Article  Google Scholar 

  47. 47.

    Wu, H.; Yang, Y.; Zhou, D.; Li, K.; Yu, J.; Han, J.; Li, Z.; Long, Z.; Ma, J.; Qiu, J.: Rb+ cations enable the change of luminescence properties in perovskite (RbxCs1−xPbBr3) quantum dots. Nanoscale 10, 3429–3437 (2018)

    Article  Google Scholar 

  48. 48.

    Gondal, M.A.; Drmosh, Q.A.; Saleh, T.A.: Preparation and characterization of SnO2 nanoparticles using high power pulsed laser. Appl. Surf. Sci. 256, 7067–7070 (2010)

    Article  Google Scholar 

  49. 49.

    Naje, A.N.; Norry, A.S.; Suhail, A.M.: Preparation and characterization of SnO2 nanoparticles. Int. J. Innov. Res. Sci. Eng. Technol. 2, 7068–7072 (2013)

    Google Scholar 

  50. 50.

    Saleh, S.A.; Ibrahim, A.A.; Mohamed, S.H.: Structural and optical properties of nanostructured Fe-doped SnO2. Acta Phys. Pol. A 129, 1220–1225 (2016)

    Article  Google Scholar 

  51. 51.

    Farahmandjou, M.: Chemical synthesis of vanadium oxide (V2O5) nanoparticles prepared by sodium metavanadate. J. Nanomed. Res. 5, 2–5 (2017)

    Article  Google Scholar 

  52. 52.

    Raut, S.D.; Awasarmol, V.V.; Ghule, B.G.; Shaikh, S.F.; Gore, S.K.; Sharma, R.P.; Pawar, P.P.; Mane, R.S.: Enhancement in room-temperature ammonia sensor activity of size-reduced cobalt ferrite nanoparticles on γ-irradiation. Mater. Res. Express. 5, 65035 (2018)

    Article  Google Scholar 

  53. 53.

    Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R.: Metal oxide gas sensors: sensitivity and influencing factors. Sensors (Basel) 10, 2088–2106 (2010)

    Article  Google Scholar 

  54. 54.

    Abdelghani, R.; Hassan, H.S.; Morsi, I.; Kashyout, A.B.: Nano-architecture of highly sensitive SnO2-based gas sensors for acetone and ammonia using molecular imprinting technique. Sens. Actuators B Chem. 297, 126668 (2019)

    Article  Google Scholar 

  55. 55.

    Tan, W.; Ruan, X.; Yu, Q.; Yu, Z.; Huang, X.: Fabrication of a SnO2-based acetone gas sensor enhanced by molecular imprinting. Sensors (Basel). 15, 352–364 (2015)

    Article  Google Scholar 

  56. 56.

    Mubeen, S.; Lai, M.; Zhang, T.; Lim, J.H.; Mulchandani, A.; Deshusses, M.A.; Myung, N.V.: Hybrid tin oxide-SWNT nanostructures based gas sensor. Electrochim. Acta 92, 484–490 (2013)

    Article  Google Scholar 

  57. 57.

    Gaber, A.; Rahim, M.A.A.; Abdel-salam, M.N.: Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. Int. J. Electrochem. Sci. 9, 81–95 (2014)

    Google Scholar 

  58. 58.

    Xue, N.; Zhang, Q.; Zhang, S.; Zong, P.; Yang, F.: Highly sensitive and selective hydrogen gas sensor. Sensors (Basel) 10, 2351 (2017)

    Article  Google Scholar 

  59. 59.

    Hijazi, M.; Stambouli, V.; Rieu, M.; Tournier, G.; Pijolat, C.; Viricelle, J.-P.: Sensitive and selective ammonia gas sensor based on molecularly modified SnO2. Proceeding 1, 1–4 (2017)

    Google Scholar 

  60. 60.

    Zou, Y.; Chen, S.; Sun, J.; Liu, J.; Che, Y.; Liu, X.; Zhang, J.; Yang, D.: Highly efficient gas sensor using a hollow SnO2 microfiber for triethylamine detection. ACS Sens. 2017(2), 897–902 (2017)

    Article  Google Scholar 

  61. 61.

    Suematsu, K.; Sasaki, M.; Ma, N.; Yuasa, M.; Shimanoe, K.: Antimony-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sens. 1, 913–920 (2016)

    Article  Google Scholar 

  62. 62.

    Hassan, H.S.; Kashyout, A.B.; Morsi, I.; Nasser, A.A.A.; Ali, I.: Synthesis, characterization and fabrication of gas sensor devices using ZnO and ZnO: In nanomaterials. Beni-Suef Univ. J. Basic Appl. Sci. 3, 216–221 (2014)

    Article  Google Scholar 

  63. 63.

    Velmathi, G.; Mohan, S.; Henry, R.: Analysis and review of tin oxide-based chemoresistive gas sensor. IETE Tech. Rev. 33, 323–331 (2016)

    Article  Google Scholar 

  64. 64.

    Rout, C.S.; Hegde, M.; Govindaraj, A.; Rao, C.N.R.: Ammonia sensors based on metal oxide nanostructures. Nanotechnology 18, 1–9 (2007)

    Article  Google Scholar 

  65. 65.

    Abokifa, A.A.; Haddad, K.; Fortner, J.; Lo, C.S.; Biswas, P.: Sensing mechanism of ethanol and acetone at room temperature by SnO2 nano-columns synthesized by aerosol routes: theoretical calculations compared to experimental results. J. Mater. Chem. A 6, 2053–2066 (2018)

    Article  Google Scholar 

  66. 66.

    Haoshuang, G.; Zhao, W.; Yongming, H.: Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors (Basel). 12, 5517–5550 (2012)

    Article  Google Scholar 

  67. 67.

    Yang, H.; Jin, W.; Wang, L.: Synthesis and characterization of V2O5-doped SnO2 nanocrystallites for oxygen-sensing properties. Mater. Lett. 57, 22–23 (2003)

    Google Scholar 

Download references


The authors wish to thank SRTA-City for its support.

Author information



Corresponding author

Correspondence to H. Shokry Hassan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, Y., Kashyout, A.B., Morsi, I. et al. Development of Nano-SnO2 and SnO2:V2O5 Thin Films for Selective Gas Sensor Devices. Arab J Sci Eng 46, 669–686 (2021).

Download citation


  • SnO2
  • V2O5
  • Nanopowder
  • Thin films
  • Morphological structures
  • Textural properties
  • Gas sensor devices