Computation of Stress Distribution in Hydraulic Horizontal Propeller Turbine Runner Based on Fluid–Structure Interaction Analysis

Abstract

In the hydro-turbine operation, the kinetic energy of flowing fluid is converted into mechanical energy. In the turbine operation, fluid induces hydraulic load that not only provides a useful mechanical driving torque on the turbine shaft but also causes deformation in turbine components and stress distribution that might induce a structure failure. Structural failure in turbine component decreases performance as well as increases the maintenance cost of hydro-turbines. In this paper, fluid–structure interaction model is used to investigate the stress distribution and total deformation of hydraulic horizontal propeller turbine runner (HHPTR) with different flow velocities, blade widths and blade wrap angles. The results showed that the effects of blade wrap angles and blade width significantly influence the performance and structural strength of the HHPTR. Maximum turbine performance was observed at blade wrap angle of 100° and blade width of 2 mm. It was also found that the maximum value of equivalent stress near the runner hub is 59.54 MPa at blade wrap angle 100°. Similarly, the maximum value of total deformation in HHPTR is 0.7689 mm near the runner blade edges at blade wrap angle 60°.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Abbreviations

C:

Coefficient

D :

Diameter, m

L :

Length of diffuser, m

m :

Meridional length, m

P :

Power, Ẇ

Re:

Reynolds number

U :

Velocity, m/s

Cp:

Power coefficient

β :

Relative angle, °

Δ:

Change in variable

θ :

Diffuser angle, °

μ :

Dynamic viscosity, Pa-s

ρ :

Density, kg/m3

Ω :

Angular velocity, rad/s

σ :

Equivalent von Mises stress, MPa

δ :

Total deformation, mm

Δθ :

Wrap angle, °

a:

Absolute

B:

Blades

H:

Hydraulic

I:

Inlet

h:

At the hub

m:

At the mean value

O:

Outlet

t:

Blade width

References

  1. 1.

    Nishi, Y.; Sato, G.; Shiohara, D.; Inagaki, T.; Kikuchi, N.: A study of the flow field of an axial flow hydraulic turbine with a collection device in an open. Renew. Energy 130, 1–1238 (2019)

    Article  Google Scholar 

  2. 2.

    Monatrakul, W.: ScienceDirect ScienceDirect ScienceDirect The 15th angle Effect of blade on turbine efficiency of a Spiral Horizontal Axis Hydro Turbine Assessing the feasibility of using the heat demand-outdoor temperature function for a long-term district heat demand f. Energy Procedia 138, 811–816 (2017)

    Article  Google Scholar 

  3. 3.

    Schmucker, H.; Flemming, F.; Coulson, S.; Gmbh, V.H.; Kg, C.: Two-way coupled fluid structure interaction simulation of a propeller turbine. IOP Conf. Ser.: Earth Environ. Sci. 3, 342–351 (2010)

    Google Scholar 

  4. 4.

    Meng, F.; Yuan, S.; Li, Y.: Fluid—structure coupling analysis of impeller in unstable region for a reversible axial-flow pump device. Adv. Mech. Eng. 10(3), 1–10 (2018)

    Article  Google Scholar 

  5. 5.

    Bai, Y.; Kong, F.; Yang, S.; Chen, K.; Dai, T.: ScienceDirect Effect of blade wrap angle in hydraulic turbine with. Int. J. Hydrogen Energy 42(29), 18145–18762 (2017)

    Article  Google Scholar 

  6. 6.

    Kumar, D.; Sarkar, S.: Modeling of flow-induced stress on helical Savonius hydrokinetic turbine with the effect of augmentation technique at different operating conditions. Renew. Energy 111, 740–748 (2017)

    Article  Google Scholar 

  7. 7.

    Li, J.; Zhang, Y.; Liu, K.; Xian, H.: Numerical simulation of hydraulic force on the impeller of reversible pump turbines in generating mode. J. Hydrodyn. 29(4), 603–609 (2017)

    Article  Google Scholar 

  8. 8.

    Riglin, J.; Carter, F.; Oblas, N.; Schleicher, W.C.; Daskiran, C.; Oztekin, A.: Experimental and numerical characterization of a full-scale portable hydrokinetic turbine prototype for river applications. Renew. Energy 99, 772–783 (2016)

    Article  Google Scholar 

  9. 9.

    Pei, J.; Meng, F.; Li, Y.; Yuan, S.; Chen, J.: Fluid—structure coupling analysis of deformation and stress in impeller of an axial-flow pump with two-way passage. Adv. Mech. Eng. 8(4), 1–11 (2016)

    Article  Google Scholar 

  10. 10.

    Luna-Ramírez, A.; Campos-Amezcua, A.; Dorantes-Gómez, O.; Mazur-Czerwiec, Z.; Muñoz-Quezada, R.: Failure analysis of runner blades in a Francis hydraulic turbine—Case study. Eng. Fail. Anal. 59, 314–325 (2016)

    Article  Google Scholar 

  11. 11.

    Odabaee, M.; Shanechi, M. M.; Hooman, K.: CFD simulation and FE analysis of a high pressure ratio radial inflow turbine. In: 19th Australasian Fluid Mechanics Conference, pp. 3–6 (2014)

  12. 12.

    Yang, S.; Wang, C.; Chen, K.; Yuan, X.: Research on blade thickness influencing pump as turbine. Adv. Mech. Eng. pp. 1–8 (2014)

  13. 13.

    Hu, F.F.; Chen, T.; Wu, D.Z.; Wang, L.Q.: Computation of stress distribution in a mixed flow pump based on fluid-structure interaction analysis. IOP Conf. Ser.: Mater. Sci. Eng. 52, 022035 (2013)

    Article  Google Scholar 

  14. 14.

    Jo, C.; Kim, D.; Rho, Y.; Lee, K.; Johnstone, C.: FSI analysis of deformation along offshore pile structure for tidal current power. Renew. Energy 54, 248–252 (2013)

    Article  Google Scholar 

  15. 15.

    Chitrakar, S.; Cervantes, M.; Thapa, B.S.: Fully coupled FSI analysis of Francis turbines exposed to sediment erosion. Int. J. Fluid Mach. Syst. 7(3), 101–109 (2015)

    Article  Google Scholar 

  16. 16.

    Daskiran, C.; Attiya, B.; Riglin, J.; Oztekin, A.: Large eddy simulations of ventilated micro hydrokinetic turbine at design and off-design operating conditions Large eddy simulations of ventilated micro hydrokinetic turbine at design and o ff -design operating conditions. Ocean Eng. 169(September), 1–18 (2018)

    Article  Google Scholar 

  17. 17.

    Riglin, J.; Schleicher, W.C.; Oztekin, A.: Numerical analysis of a shrouded micro-hydrokinetic turbine unit. J. Hydraul. Res. 53(4), 525–531 (2015)

    Article  Google Scholar 

  18. 18.

    Binama, M.; Su, W.; Li, X.; Li, F.; Wei, X.; An, S.: Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: a state-of-the-art review. Renew. Sustain. Energy Rev. 79(April), 148–179 (2017)

    Article  Google Scholar 

  19. 19.

    Saeed, R.A.; Galybin, A.N.; Popov, V.: Advances in Engineering Software Modelling of flow-induced stresses in a Francis turbine runner. Adv. Eng. Softw. 41(12), 1245–1255 (2010)

    MATH  Article  Google Scholar 

  20. 20.

    Environment, V.S.: Fluid structure interaction modelling of tidal. Energies 11(1837) (2018)

  21. 21.

    Luo, X.; Ji, B.; Tsujimoto, Y.: A review of cavitation in hydraulic machinery. J. Hydrodyn. Ser. B 28(3), 335–358 (2016)

    Article  Google Scholar 

  22. 22.

    Samora, I.; Hasmatuchi, V.; Münch-Alligné, C.; Franca, M.J.; Schleiss, A.J.; Ramos, H.M.: Experimental characterization of a five blade tubular propeller turbine for pipe inline installation. Renew. Energy 95, 356–366 (2016). Supplement C

    Article  Google Scholar 

  23. 23.

    Alveyro, L.; Jose, F.; Aida, S.: Performance improvement of a 500-kW Francis turbine based on CFD. Renew. Energy 96, 977–992 (2016)

    Article  Google Scholar 

  24. 24.

    Liu, X.; Luo, Y.; Karney, B.W.; Wang, W.: A selected literature review of efficiency improvements in hydraulic turbines. Renew. Sustain. Energy Rev. 51, 18–28 (2015)

    Article  Google Scholar 

  25. 25.

    Koirala, R.; Chitrakar, S.; Panthee, A.; Neopane, H.P.; Thapa, B.: Implementation of computer aided engineering for francis turbine development in Nepal. Int. J. Manuf. Eng. 2015, (2015)

  26. 26.

    Hernandez-carrillo, I.: ScienceDirect ScienceDirect Advanced materials impeller on an ORC radial microturbine Assessing the feasibility of using the a long-term district demand forecast. Energy Procedia 129, 1047–1054 (2017)

    Article  Google Scholar 

  27. 27.

    Lee, H.; Song, M.; Suh, J.; Chang, B.: Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm. Int. J. Nav. Architect. Ocean Eng. 6(3), 507–761 (2014)

    Article  Google Scholar 

  28. 28.

    Li, H.; Zhou, D.; Martinez, J.J.; Deng, Z.D.; Kenneth, I.; Westman, M.P.: Design and performance of composite runner blades for ultra low head turbines. Renew. Energy 132, 1–1436 (2019)

    Article  Google Scholar 

  29. 29.

    Trivedi, C.; Cervantes, M.J.: Fluid-structure interactions in Francis turbines: a perspective review. Renew. Sustain. Energy Rev. 68(2015), 87–101 (2017)

    Article  Google Scholar 

  30. 30.

    Kulkarni, S.S.; Chapman, C.; Shah, H.: Computational fluid dynamics (CFD) mesh independency study of a straight blade horizontal axis tidal turbine. (2016). https://doi.org/10.20944/preprints201608.0008.v1

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Waqas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Waqas, M., Ahmad, N. Computation of Stress Distribution in Hydraulic Horizontal Propeller Turbine Runner Based on Fluid–Structure Interaction Analysis. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-04727-9

Download citation

Keywords

  • Fluid–structure interaction
  • Propeller turbine
  • Blade wrap angle
  • Runner blades
  • Computational fluid dynamics
  • Finite element method