Skip to main content
Log in

Evaluation of Anti-inflammatory Activity and In Vitro Drug Release of Ibuprofen-Loaded Nanoparticles Based on Sodium Alginate and Chitosan

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Ionotropic gelation followed by polyelectrolyte complexion was used for the synthesis of nanoparticles based on sodium alginate (NaAL) and chitosan (CS) for encapsulation of ibuprofen (IBP), Fourier transform infrared spectroscopy, differential scanning calorimetry, field-emission scanning electron microscopes, percentage of encapsulation efficiency and loading capacity have been used to confirm the synthesis and encapsulation of IBP. The results obtained show that they have a size of around 100 nm. In vitro drug release and evaluation of anti-inflammatory activity in different media indicate that the nanoparticles are pH-sensitive and permit the protection of the drug against total dissolution in the gastric medium, control its release, and it increases the solubility and biological activity of IBP. The analytical data of the in vitro drug release in the simulated gastric fluid (SGF), simulated interstitial fluid (SIF) and phosphate buffered saline (PBS) were fitted to the different kinetic models (zero-order, first-order, Higuchi, Korsmeyer–Pepass and Kopcha), and the results indicate that IBP is released by diffusion-controlled in SIF and PBS, and by erosion-controlled in the SGF. The toxicity of nanoparticles was tested against Artemia salina that displayed non-toxicity effects. In vitro biodegradation by lysozyme and all the results obtained indicated that a NaAL/CS nanoparticles are a promising system for IBP release that can achieve pseudo-zero-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arica, B.; Çaliş, S.; Atilla, P.; Durlu, N.T.; Çakar, N.; Kaş, H.S.; Hincal, A.A.: In vitro and in vivo studies of ibuprofen-loaded biodegradable alginate beads. J. Microencapsul. (2005). https://doi.org/10.1080/02652040400026319

    Article  Google Scholar 

  2. Hattori, Y.; Haruna, Y.; Otsuka, M.: Dissolution process analysis using model-free Noyes–Whitney integral equation. Colloids. Surf. B. Biointerfaces (2013). https://doi.org/10.1016/j.colsurfb.2012.08.017

    Article  Google Scholar 

  3. Liu, J.; Xiao, J.; Li, F.; Shi, Y.; Li, D.; Huang, Q.: Chitosan-sodium alginate Nanoparticle as a delivery system for ε-polylysine: preparation, characterization and antimicrobial activity. Food Control (2018). https://doi.org/10.1016/j.foodcont.2018.04.020

    Article  Google Scholar 

  4. Kumari, A.; Yadav, K.S.; Yadav, S.C.: Biodegradable polymeric Nanoparticles based drug delivery systems. Colloids Surf. B. Biointerfaces (2010). https://doi.org/10.1016/j.colsurfb.2009.09.001

    Article  Google Scholar 

  5. Fessi, H.; Puisieux, F.; Devissaguet, JPh; Ammoury, N.; Benita, S.: Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. (1989). https://doi.org/10.1016/0378-5173(89)90281-0

    Article  Google Scholar 

  6. Niwa, T.; Takeuchi, H.; Hino, T.; Kunou, N.; Kawashima, Y.: Preparations of biodegradable Nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J. Control. Release (1993). https://doi.org/10.1016/0168-3659(93)90097-O

    Article  Google Scholar 

  7. Allémann, E.; Leroux, J.; Gurny, R.: In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharm. Res. (1993). https://doi.org/10.1023/A:1018970030327

    Article  Google Scholar 

  8. Rajaonarivony, M.; Vauthier, C.; Couarraze, G.; Puisieux, F.; Couvreur, P.: Development of a new drug carrier made from alginate. J. Pharm. Sci. (1993). https://doi.org/10.1002/jps.2600820909

    Article  Google Scholar 

  9. Vauthier, C.; Bouchemal, K.: Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. (2009). https://doi.org/10.1007/s11095-008-9800-3

    Article  Google Scholar 

  10. Thakur, S.; Sharma, B.; Verma, A.; Chaudhary, J.; Tamulevicius, S.; Thakur, V.K.: Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2018.06.259

    Article  Google Scholar 

  11. Sarmento, B.; Ribeiro, A.J.; Veiga, F.; Ferreira, D.C.; Neufeld, R.J.: Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J. Nanosci. Nanotechnol. (2007). https://doi.org/10.1166/jnn.2007.609

    Article  Google Scholar 

  12. Henao, E.; Delgado, E.; Contreras, H.; Quintana, G.: Polyelectrolyte complexation versus ionotropic gelation for chitosan-based hydrogels with carboxymethylcellulose, carboxymethyl starch, and alginic acid. Int. J. Chem. Eng (2018). https://doi.org/10.1155/2018/3137167

    Article  Google Scholar 

  13. Boddohi, S.; Moore, N.; Johnson, P.A.; Kipper, M.J.: Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules (2009). https://doi.org/10.1021/bm801513e

    Article  Google Scholar 

  14. Nalini, T.; Khaleel Basha, S.; Majeeth, A.M.S.; Sugantha Kumari, V.; Kaviyarasu, K.: Development and characterization of alginate/chitosan nanoparticulate system for hydrophobic drug encapsulation. J Drug Deliv Sci Technol (2019). https://doi.org/10.1016/j.jddst.2019.04.002

    Article  Google Scholar 

  15. Naskar, S.; Sharma, S.; Kuotsu, K.: Chitosan-based nanoparticles: an overview of biomedical applications and its preparation. J Drug Deliv Sci Technol (2019). https://doi.org/10.1016/j.jddst.2018.10.022

    Article  Google Scholar 

  16. Prabaharan, M.: Chitosan-based nanoparticles for tumor-targeted drug delivery. Int. J. Biol. Macromol. (2014). https://doi.org/10.1016/j.ijbiomac.2014.10.052

    Article  Google Scholar 

  17. Yadav, G.; Bansal, M.; Thakur, N.; Sargam Khare, P.: Multilayer tablets and their drug release kinetic models for oral controlled drug delivery system. Middle-East J. Sci. Res. (2013). https://doi.org/10.5829/idosi.mejsr.2013.16.06.75176

    Article  Google Scholar 

  18. Peppas, N.A.; Sahlin, J.J.: A simple equation for the description of solute release. II. Coupling of diffusion and relaxation. Int. J. Pharm., Int (1989). https://doi.org/10.1016/0378-5173(89)90306-2

    Book  Google Scholar 

  19. Kopcha, M.; Lordi, N.G.; Tojo, K.J.: Evaluation of release from selected thermosoftening vehicles. J. Pharm. Pharmacol. (1991). https://doi.org/10.1111/j.2042-7158.1991.tb03

    Article  Google Scholar 

  20. Karthik, K.; Ravi, M.; BharathRathnaKumar, P.: Evaluation of anti-inflammatory activity of canthium parviflorum by in vitro method. Biotech. Pharm. Res, Indian J (2013). https://doi.org/10.21276/ajptr

    Book  Google Scholar 

  21. Gomathi, T.; Sudha, P.N.; Florence, J.A.K.; Venkatesan, J.; Sukumaran, A.: Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method. Int. J. Biol. Macromol. (2017). https://doi.org/10.1016/j.ijbiomac.2017.01.147

    Article  Google Scholar 

  22. Michael, A.S.; Thompson, C.G.; Abramovitz, M.: Artemia salina as a test organism for bioassay. Science (1956). https://doi.org/10.1126/science.123.3194.464

    Article  Google Scholar 

  23. Solairaj, D.; Rameshthangam, P.; Muthukumaran, P.; Wilson, J.: Studies on electrochemical glucose sensing, antimicrobial activity and cytotoxicity of fabricated copper nanoparticle immobilized chitin nanostructure. Int. J. Biol. Macromol. (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.147

    Article  Google Scholar 

  24. Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L.: Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. (1982). https://doi.org/10.1055/s-2007-971236

    Article  Google Scholar 

  25. Hirai, A.; Odani, H.; Nakajima, A.: Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym. Bull. (1991). https://doi.org/10.1007/BF00299352

    Article  Google Scholar 

  26. Smitha, B.; Sridhar, S.; Khan, A.A.: Chitosan–sodium alginate polyion complexes as fuel cell membranes. Eur. Polym J. (2005). https://doi.org/10.1016/j.eurpolymj.2005.02.018

    Article  Google Scholar 

  27. Rathore, H.S.; Senthilvelan, T.; Vasantharaja, R.; Abraham, L.S.; Prakash, D.; Sivagnanam, U.T.; Gupta, S.: Fabrication and characterization of chitosan film impregnated ciprofloxacin drug: a comparative study. ISBAB (2019). https://doi.org/10.1016/j.bcab.2019.101078

    Article  Google Scholar 

  28. Pereira, F.S.; da Silva Agostini, D.L.; Job, A.E.: Thermal studies of chitin–chitosan derivatives. J. Therm. Anal. Calorim. (2013). https://doi.org/10.1007/s10973-012-2835-z

    Article  Google Scholar 

  29. Wang, Y.; Pitto-barry, A.; Habtemariam, A.; Romero-canelon, I.; Sadler, P.J.; Barry, N.P.E.: Nanoparticles of chitosan conjugated to organo-ruthenium complexes. Inorg. Chem. Front. (2016). https://doi.org/10.1039/c6qi00115g

    Article  Google Scholar 

  30. Ramukutty, S.; Ramachandran, E.: Growth, spectral and thermal studies of ibuprofen crystals. Cryst. Res. Technol. (2012). https://doi.org/10.1002/crat.201100394

    Article  Google Scholar 

  31. Sarmento, B.; Ferreira, D.; Veiga, F.; Ribeiro, A.: Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym. (2006). https://doi.org/10.1016/j.carbpol.2006.02.008

    Article  Google Scholar 

  32. Voo, W.P.; Lee, B.B.; Idris, A.; Islam, A.; Tey, B.; Chan, E.S.: Production of ultra-high concentration calcium alginate beads with prolonged dissolution profile. RSC Adv. (2015). https://doi.org/10.1039/C5RA03862F

    Article  Google Scholar 

  33. Saravanan, M.; Bhaskar, K.; Srinivasa, R.G.; Dhanaraju, M.D.: Ibuprofen-loaded ethylcellulose/polystyrene microspheres: an approach to get prolonged drug release with reduced burst effect and low ethylcellulose content. J. Microencapsul. (2003). https://doi.org/10.1080/0265204031000093087

    Article  Google Scholar 

  34. Singh, R.; Lillard, J.W.: Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. (2012). https://doi.org/10.1016/j.yexmp.2008.12.004

    Article  Google Scholar 

  35. Longmire, M.; Choyke, P.L.; Kobayashi, H.: Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (London) (2012). https://doi.org/10.2217/17435889.3.5.703

    Article  Google Scholar 

  36. Li, P.; Dai, Y.; Zhang, J.; Wang, A.; Wei, Q.: Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int. J. Biomed. Sci. 4, 221–228 (2008)

    Google Scholar 

  37. Bajpai, S.K.; Sharma, S.: Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. (2004). https://doi.org/10.1016/j.reactfunctpolym.2004.01.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the biotechnology research centre (CRBt) for their supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouzia Belaib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensouiki, S., Belaib, F., Sindt, M. et al. Evaluation of Anti-inflammatory Activity and In Vitro Drug Release of Ibuprofen-Loaded Nanoparticles Based on Sodium Alginate and Chitosan. Arab J Sci Eng 45, 7599–7609 (2020). https://doi.org/10.1007/s13369-020-04720-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04720-2

Keywords

Navigation