Skip to main content
Log in

Taguchi Approach in Combination with CFD Simulation as a Technique for the Optimization of the Operating Conditions of PEM Fuel Cells

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In proton exchange membrane fuel cell (PEMFC) systems operating at low temperature, water management is important as it helps to improve cell performance. In this research paper, a three-dimensional, steady-state and non-isothermal model was established. The paper is aimed at investigating the effect of water flooding on the PEMFC performance. The Taguchi approach was proposed to obtain optimal levels and analyze the influence of different parameters, such as relative humidity (RH) on the anode and cathode sides, gas diffusion layer (GDL) porosity on the anode and cathode sides, temperature and pressure, respectively. To illustrate the effect of wet inlet gases, the relative humidity and the GDL porosity for the model were varied on both sides of the anode and cathode as follows: 10%, 30%, 50%, 70% and 90%. Therefore, our findings show that at the anode RH = 0% and 100%, the optimum levels were (L4, L5, L3 and L1) and (L1, L1, L5 and L4) for the relative humidity of the cathode, GDL porosity of the cathode, temperature and pressure, respectively, while at the cathode RH = 0% and 100%, the optimum levels were (L5, L5, L5 and L4) and (L1, L5, L1 and L4) for the relative humidity of the anode, GDL porosity of the anode, temperature and pressure, respectively. Consequently, the maximum power densities for the optimal combinations were found to be 0.727, 0.725, 0.135 and 0.111 for the anode RH = 0%, anode RH = 100%, cathode RH = 0% and cathode RH = 100%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

L1, L2, L3, L4 and L5:

Level 1, level 2, level 3, level 4 and level 5

RH:

Relative humidity

GDL:

Gas diffusion layer

CFD:

Computational fluid dynamics

r :

Drag coefficient

CL:

Catalyst layer

\( \Delta \) :

Difference of values

S/N :

Signal/noise

T :

Temperature

P :

Pressure

P max :

Maximum power density (W/cm2)

η :

Overall mean of S/N

\( x_{{{\text{H}}_{2} {\text{O}},\text{int} }} \) :

The molar fraction of water at the anode inlet

\( x_{{{\text{H}}_{2} {\text{O}},{\text{out}}}} \) :

The molar fraction of water at the anode outlet

\( \xi_{\text{anode}} \) :

The stoichiometric flow ratio at anode

\( \xi_{\text{cathode}} \) :

The stoichiometric flow ratio at cathode

References

  1. Mench, M.M.: Fuel Cell Engines. Wiley, Hoboken (2008)

    Book  Google Scholar 

  2. Ji, M.; Wei, Z.: A review of water management in polymer electrolyte membrane fuel cells. Energies 2, 1057–1106 (2009)

    Article  Google Scholar 

  3. Cheng, S.J.; Miao, J.M.; Wu, S.J.: Numerical optimization design of PEM fuel cell performance applying the Taguchi method. World Acad. Sci. Eng. Technol. 41, 249–255 (2010)

    Google Scholar 

  4. Chang, K.Y.: The optimal design for PEMFC modeling based on Taguchi method and genetic algorithm neural networks. Int. J. Hydrogen Energy 36, 13683–13694 (2011)

    Article  Google Scholar 

  5. Chang, K.Y.; Lin, H.J.; Chen, P.C.: The optimal performance estimation for an unknown PEMFC based on the Taguchi method and a generic numerical PEMFC model. Int. J. Hydrogen Energy 34, 1990–1998 (2009)

    Article  Google Scholar 

  6. Wu, S.J.; Shiah, S.W.; Yu, W.L.: Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network. Renew. Energy 34(1), 135–144 (2009). https://doi.org/10.1016/j.renene.2008.03.006

    Article  Google Scholar 

  7. Ng, T.M.; Yusoff, N.: An investigation on performance of 2D simulated fuel cells using Taguchi method, engineering. In: Ab. Hamid, K., Ono, O., Bostamam, A., Poh Ai Ling, A. (eds.) The Malaysia-Japan Model on Technology Partnership. Springer, Tokyo (2015). https://doi.org/10.1007/978-4-431-54439-5_2

  8. Kaytakoğlu, S.; Akyalçın, L.: Optimization of parametric performance of a PEMFC. Int. J. Hydrogen Energy 32(17), 4418–4423 (2007)

    Article  Google Scholar 

  9. Roy, R.K.: Design of Experiments using the Taguchi Approach. Wiley, New York (2001)

    Google Scholar 

  10. Ross, J.P.: Taguchi Techniques for Quality Engineering. McGraw-Hill, New York (1988)

    Google Scholar 

  11. Wu, H.W.; Ku, H.W.: Effects of modified flow field on optimal parameters estimation and cell performance of a PEM fuel cell with the Taguchi method. Int. J. Hydrogen Energy 37(2), 1613–1627 (2012)

    Article  Google Scholar 

  12. Dante, R.C.; Escamilla, J.L.; Madrigal, V.; Theuss, T.; de Dios, J.C.; Solorza, O.; et al.: Fractional factorial design of experiments for PEM fuel cell performances improvement. Int. J. Hydrogen Energy 28, 343–348 (2003)

    Article  Google Scholar 

  13. Lin, C.; Yan, X.; Wei, G.; Ke, C.; Shen, S.; Zhang, J.: Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method. Appl. Energy 253, 113496 (2019)

    Article  Google Scholar 

  14. Berning, T.: On water transport in polymer electrolyte membranes during the passage of current. Int. J. Hydrogen Energy 36(15), 9341–9344 (2011)

    Article  Google Scholar 

  15. Amirinejad, M.; Rowshanzamir, S.; Eikani, M.H.: Effects of operating parameters on performance of a proton exchange membrane fuel cell. J. Power Sources 161(2), 872–875 (2006)

    Article  Google Scholar 

  16. Al-Baghdadi, M.A.R.S.; Al-Janabi, H.A.K.S.: Effect of operating parameters on the hygro-thermal stresses in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 32(17), 4510–4522 (2007)

    Article  Google Scholar 

  17. Wahadame, B.; Candusso, D.; François, X.; Harel, F.; Kauffman, J.M.; Coquery, G.: Design of experiment techniques for fuel cell characterisation and development. Int. J. Hydrogen Energy 34, 967–980 (2009)

    Article  Google Scholar 

  18. Berning, T.: The dew point temperature as a criterion for optimizing the operating conditions of proton exchange membrane fuel cell. Int. J. Hydrogen Energy 37(13), 10265–10275 (2012)

    Article  Google Scholar 

  19. Karthikeyan, P.; Muthukumar, M.; Shanmugam, S.V.; Kumar, P.P.; Murali, S.; Kumar, A.P.S.: Optimization of Operating and design parameters on proton exchange membrane fuel cell by using Taguchi method. Procedia Eng. 64, 409–418 (2013)

    Article  Google Scholar 

  20. Kim, H.Y.; Kim, K.: Numerical study on the effects of gas humidity on proton-exchange membrane fuel cell performance. Int. J. Hydrogen Energy 41(27), 11776–11783 (2016)

    Article  Google Scholar 

  21. Sasmito, A.P.; Kurnia, J.C.; Shamim, T.; Mujumdar, A.S.: Optimization of design parameters for an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method. Energy Procedia 75, 2027–2032 (2015)

    Article  Google Scholar 

  22. Liu, Y.; Fan, L.; Pei, P.; Yao, S.; Wang, F.: Asymptotic analysis for the inlet relative humidity effects on the performance of proton exchange membrane fuel cell. Appl. Energy 213, 573–584 (2018)

    Article  Google Scholar 

  23. Zhang, Q.; Feng, J.; Zhang, Q.; Peng, X.: Performance prediction and evaluation of the scroll-type hydrogen pump for FCVs based on CFD-Taguchi method. Int. J. Hydrogen Energy 44, 15333–15343 (2019)

    Article  Google Scholar 

  24. Wong, K.; Loo, K.; Lai, Y.; Tan, S.-C.; Chi, K.T.: A theoretical study of inlet relative humidity control in PEM fuel cell. Int. J. Hydrog. Energy 36, 11871–11885 (2011)

    Article  Google Scholar 

  25. Amadane, Y.; Mounir, H.; El Marjani, A.; Ettouhami, M.K.: A computational fluid dynamics (CFD) investigation of two PEM fuel cells with straight single-channel(SC): SC-40 mm and SC-50 mm. In: IEEE Conference (IRSEC) (2018). https://doi.org/10.1109/irsec.2018. 8702826.

  26. Wu, H.W.; Ku, H.W.: The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method. Appl. Energy 88, 4879–4890 (2011). https://doi.org/10.1016/j.apenergy.2011.06.034

    Article  Google Scholar 

  27. Berning, T.: Employing dew points diagrams to optimize PEMFC operating conditions. ECS Trans. 50, 557–568 (2015)

    Article  Google Scholar 

  28. Amadane, Y.; Mounir, H.; El Marjani, A.; Ettouhami, M.K.; Awan, A.: Numerical investigation of hydrogen consumption in proton exchange membrane fuel cell by using computation fluid dynamics(CFD) simulation. Mediterr. J. Chem. 7(6), 396–415 (2019)

    Article  Google Scholar 

  29. Amadane, Y.; Mounir, H.; El Marjani, A.; El Alaoui, R.; Ettouhami, M.K.; Daoudi, K.: Computational analysis of water distribution in a PEM fuel cell under different conditions. In: IEEE Conference (ICOA) (2019). https://doi.org/10.1109/icoa.2019.8727698.

  30. Fofana, D.; Natarajan, S.K.; Hamelin, J.; Benard, P.: Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach. Energy 64, 398–403 (2014)

    Article  Google Scholar 

  31. Wang, J.; Yuan, J.; Sundén, B.: Modeling of inhomogeneous compression effects of porous GDL on transport phenomena and performance in PEM fuel cells. Int. J. Energy Res. 41, 985–1003 (2017). https://doi.org/10.1002/er.3687

    Article  Google Scholar 

  32. Anil Can, T.; Cenk, C.: The effect of different gas diffusion layer porosity on proton exchange membrane fuel cells. Fuel 222, 465–474 (2018)

    Article  Google Scholar 

  33. Faydi, Y.; Lachat, R.; Meyer, Y.: Thermomechanical characterisation of commercial gas diffusion layers of a proton exchange membrane fuel cell for high compressive pre-loads under dynamic excitation. Fuel 182(99), 124–130 (2016). https://doi.org/10.1016/j.fuel.2016.05.074

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Amadane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amadane, Y., Mounir, H., El Marjani, A. et al. Taguchi Approach in Combination with CFD Simulation as a Technique for the Optimization of the Operating Conditions of PEM Fuel Cells. Arab J Sci Eng 45, 7587–7597 (2020). https://doi.org/10.1007/s13369-020-04706-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04706-0

Keywords

Navigation