Skip to main content
Log in

Map-Reduce-Based Centrality Detection in Social Networks: An Algorithmic Approach

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Social network analysis is found to be one of the emerging research directions in the field of data science. This paper mainly concerns with the identification of influential entities with the help of several centrality measures like degree, closeness, and eigenvector centrality. The computational efficiency of analyzing social networks is limited by the size and complexity of the network domain. As the size of the network grows at an exponential rate, it is quite challenging to process the massive network with the help of conventional computing resources. In this manuscript, scalability and complexity issues have been addressed to identify the influential nodes in the network by implementing the algorithm in a distributed manner. The distributed approach has been considered in computing different centrality measures like degree, closeness, and eigenvector. In this paper, the centrality measures have been computed by considering both the local and global structural information. Real-world social networks are observed to follow the power law in both centrality drift and degree distribution. In this work, nodes are ranked based on their importance for different centrality measures. The effectiveness of these algorithms is critically examined through experimentation by using six real-time network datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978). https://doi.org/10.1016/0378-8733(78)90021-7

    Article  Google Scholar 

  2. Newman, M.E.: A measure of betweenness centrality based on random walks. Soc. Netw. 27(1), 39–54 (2005). https://doi.org/10.1016/j.socnet.2004.11.009

    Article  Google Scholar 

  3. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966). https://doi.org/10.1007/BF02289527

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987). https://doi.org/10.1086/228631

    Article  Google Scholar 

  5. Kang, U.; Papadimitriou, S.; Sun, J.; Tong, H.: Centralities in large networks: algorithms and observations. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 119–130. Society for Industrial and Applied Mathematics (2011). https://doi.org/10.1137/1.9781611972818.11

  6. Behera, R.K.; Sukla, A.S.; Mahapatra, S.; Rath, S.K.; Sahoo, B.; Bhattacharya, S.: Map-Reduce Based Link Prediction for Large Scale Social Network (2017). https://doi.org/10.18293/SEKE2017-100

  7. Okamoto, K.; Chen, W.; Li, X.Y.: Ranking of closeness centrality for large-scale social networks. In: Preparata, F.P.; Wu, X.; Yin, J. (eds.) International Workshop on Frontiers in Algorithmics, pp. 186–195. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-69311-6_21

    Chapter  Google Scholar 

  8. Barthelemy, M.: Betweenness centrality in large complex networks. Eur. Phys. J. B 38(2), 163–168 (2004). https://doi.org/10.1140/epjb/e2004-00111-4

    Article  Google Scholar 

  9. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001). https://doi.org/10.1080/0022250X.2001.9990249

    Article  MATH  Google Scholar 

  10. Cook, D.J.; Holder, L.B. (eds.): Mining Graph Data. Wiley, Hoboken (2006)

    Google Scholar 

  11. You, K.; Tempo, R.; Qiu, L.: Distributed algorithms for computation of centrality measures in complex networks. IEEE Trans. Autom. Control 62(5), 2080–2094 (2017). https://doi.org/10.1109/TAC.2016.2604373

    Article  MathSciNet  MATH  Google Scholar 

  12. Kumar Behera, R.; Kumar Rath, S.; Misra, S.; Damaševičius, R.; Maskeliūnas, R.: Distributed centrality analysis of social network data using MapReduce. Algorithms 12(8), 161 (2019). https://doi.org/10.3390/a12080161

    Article  MATH  Google Scholar 

  13. Guimera, R.; Danon, L.; Diaz-Guilera, A.; Giralt, F.; Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 065103 (2003). https://doi.org/10.1103/PhysRevE.68.065103

    Article  Google Scholar 

  14. Borgatti, S.P.; Everett, M.G.: A graph-theoretic perspective on centrality. Soc. Netw. 28(4), 466–484 (2006). https://doi.org/10.1016/j.socnet.2005.11.005

    Article  Google Scholar 

  15. Cook, D.J.: All Pairs Shortest Path Algorithms (1999). http://hdl.handle.net/10092/11197

  16. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003). https://doi.org/10.1137/S003614450342480

    Article  MathSciNet  MATH  Google Scholar 

  17. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R.: The hadoop distributed file system: mass storage systems and technologies (MSST) 2010 IEEE 26th symposium on. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST) (2010). https://doi.org/10.1109/msst.2010.5496972

  18. Yang, H.C.; Dasdan, A.; Hsiao, R.L.; Parker, D.S.: Map-reduce-merge: simplified relational data processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 1029–1040. ACM (2007). https://doi.org/10.1145/1247480.1247602

  19. Barabâsi, A.L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A 311(3–4), 590–614 (2002). https://doi.org/10.1016/S0378-4371(02)00736-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Behera, R.K.; Rath, S.K.: An efficient modularity based algorithm for community detection in social network. In: International Conference on Internet of Things and Applications (IOTA), pp. 162–167. IEEE (2016). https://doi.org/10.1109/iota.2016.7562715

  21. Behera, R.K.; Rath, S.K.; Jena, M.: Spanning tree based community detection using min-max modularity. Procedia Comput. Sci. 93, 1070–1076 (2016). https://doi.org/10.1016/j.procs.2016.07.311

    Article  Google Scholar 

  22. Chen, W.; Wang, C.; Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1029–1038. ACM (2010). https://doi.org/10.1145/1835804.1835934

  23. Cataldi, M.; Di Caro, L.; Schifanella, C.: Emerging topic detection on twitter based on temporal and social terms evaluation. In: Proceedings of the Tenth International Workshop on Multimedia Data Mining, p. 4. ACM (2010). https://doi.org/10.1145/1814245.1814249

  24. Breiger, R.L.; Boorman, S.A.; Arabie, P.: An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling. J. Math. Psychol. 12(3), 328–383 (1975). https://doi.org/10.1016/0022-2496(75)90028-0

    Article  Google Scholar 

  25. Borgatti, S.P.; Cross, R.: A relational view of information seeking and learning in social networks. Manag. Sci. 49(4), 432–445 (2003). https://doi.org/10.1287/mnsc.49.4.432.14428

    Article  MATH  Google Scholar 

  26. Tang, J.; Sun, J.; Wang, C.; Yang, Z.: Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 807–816. ACM (2009). https://doi.org/10.1145/1557019.1557108

  27. Ruhnau, B.: Eigenvector-centrality—a node-centrality? Soc. Netw. 22(4), 357–365 (2000). https://doi.org/10.1016/S0378-8733(00)00031-9

    Article  Google Scholar 

  28. Pillai, S.U.; Suel, T.; Cha, S.: The Perron-Frobenius theorem: some of its applications. IEEE Signal Process. Mag. 22(2), 62–75 (2005). https://doi.org/10.1109/MSP.2005.1406483

    Article  Google Scholar 

  29. Santos, E.E.; Pan, L.; Arendt, D.; Pittkin, M.: An effective anytime anywhere parallel approach for centrality measurements in social network analysis. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, vol. 6, pp. 4693–4698. IEEE (2006). https://doi.org/10.1109/icsmc.2006.385045

  30. Wang, W.; Tang, C.Y.: Distributed computation of classic and exponential closeness on tree graphs. In: American Control Conference (ACC), 2014, pp. 2090–2095. IEEE (2014). https://doi.org/10.1109/acc.2014.6858727

  31. Gupta, N.; Singh, A.; Cherifi, H.: Centrality measures for networks with community structure. Physica A 452, 46–59 (2016). https://doi.org/10.1016/j.physa.2016.01.066

    Article  Google Scholar 

  32. Saxena, R.; Kaur, S.; Bhatnagar, V.: Social centrality using network hierarchy and community structure. Data Min. Knowl. Disc. 32(5), 1421–1443 (2018). https://doi.org/10.1007/s10618-018-0582-x

    Article  MathSciNet  MATH  Google Scholar 

  33. Aini, A.; Salehipour, A.: Speeding up the Floyd–Warshall algorithm for the cycled shortest path problem. Appl. Math. Lett. 25(1), 1–5 (2012). https://doi.org/10.1016/j.aml.2011.06.008

    Article  MathSciNet  MATH  Google Scholar 

  34. Kanan, T.; Sadaqa, O.; Aldajeh, A.; Alshwabka, H.; AlZu’bi, S.; Elbes, M.; et al.: A review of natural language processing and machine learning tools used to analyze arabic social media. In: 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), pp. 622–628. IEEE (2019). https://doi.org/10.1109/jeeit.2019.8717369

  35. AlZu’bi, S.; Hawashin, B.; EIBes, M.; Al-Ayyoub, M.: A novel recommender system based on a priori algorithm for requirements engineering. In: 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS), pp. 323–327. IEEE (2018). https://doi.org/10.1109/snams.2018.8554909

  36. Hawashin, B.; Alzubi, S.; Kanan, T.; Mansour, A.: An efficient semantic recommender method forarabic text. Electron. Libr. (2019). https://doi.org/10.1108/EL-12-2018-0245

    Article  Google Scholar 

  37. Abooraig, R.; Al-Zu’bi, S.; Kanan, T.; Hawashin, B.; Al Ayoub, M.; Hmeidi, I.: Automatic categorization of Arabic articles based on their political orientation. Digit. Investig. 25, 24–41 (2018). https://doi.org/10.1016/j.diin.2018.04.003

    Article  Google Scholar 

  38. Hawashin, B.; Mansour, A.; Abukhait, J.; Khazalah, F.; AlZu’bi, S.; Kanan, T.; et al.: Efficient texture classification using independent component analysis. In: 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), pp. 544–547. IEEE (2019). https://doi.org/10.1109/jeeit.2019.8717518

  39. Salah, K.; Calero, J.M.A.: Achieving elasticity for cloud MapReduce jobs. In: 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet), pp. 195–199. IEEE (2013). https://doi.org/10.1109/cloudnet.2013.6710577

  40. Gruber, A.; Wessel, B.; Martone, M.; Roth, A.: The TanDEM-X DEM mosaicking: fusion of multiple acquisitions using InSAR quality parameters. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9(3), 1047–1057 (2015). https://doi.org/10.1109/JSTARS.2015.2421879

    Article  Google Scholar 

  41. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977). https://doi.org/10.1086/jar.33.4.3629752

    Article  Google Scholar 

  42. Gleiser, P.M.; Danon, L.: Community structure in jazz. Adv. Compl. Syst. 6(04), 565–573 (2003). https://doi.org/10.1142/S0219525903001067

    Article  Google Scholar 

  43. Hamsterster friendships network dataset – {KONECT}.: Hamsterster Friendships Network Dataset—{KONECT} (2017). http://konect.uni-koblenz.de/networks/petster-friendships-hamster.

  44. Leskovec, J.; Mcauley, J.J.: Learning to discover social circles in ego networks. In: Pereira, F.; Burges, C.J.C.; Bottou, L.; Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp. 539–547. Curran Associates Inc., Red Hook, NY (2012). https://doi.org/10.1145/2556612

    Chapter  Google Scholar 

  45. Yang, J.; Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowledge and Information Systems 42(1), 181–213 (2015). https://doi.org/10.1109/ICDM.2012.138

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by IIT(ISM), Govt. of India, Dhanbad. The authors would like to express their gratitude and heartiest thanks to the Department of Computer Science & Engineering, Indian Institute of Technology (ISM), Dhanbad, India, for providing their research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharavath Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, D., Behera, R.K., Ramesh, D. et al. Map-Reduce-Based Centrality Detection in Social Networks: An Algorithmic Approach. Arab J Sci Eng 45, 10199–10222 (2020). https://doi.org/10.1007/s13369-020-04636-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04636-x

Keywords

Navigation