Skip to main content

Advertisement

Log in

Numerical Treatments to Analyze the Nonlinear Radiative Heat Transfer in MHD Nanofluid Flow with Solar Energy

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the current study, the nonlinear radiative heat transfer effects due to solar radiation in magneto-hydrodynamic (MHD) nanofluidic problem are analyzed effectively by novel application of numerical computing by Adams predictor–corrector and explicit backward difference solvers. The governing relations of PDEs for the model are transformed into the system of ODEs, and numerical solvers are applied to the transformed system to study the effect of radiation parameter along with thermophoresis parameter, Brownian motion parameter, magnetic field parameter, Lewis number, Prandtl number, Eckert number and Biot number on velocity, temperature and nanoparticle concentration profiles. The comparative study of both solvers is provided in sufficient number of graphical and numerical illustrations to prove the worth in terms of accuracy, robustness and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Abbreviations

\( (u,w) \) :

Components of velocity profile

\( (U,W) \) :

Coordinate axes

\( T \) :

Fluid temperature

\( p \) :

Fluid pressure

\( \upsilon \) :

Dynamic viscosity

C :

Nanoparticle concentration

\( q_{\text{r}} \) :

Radiative heat flux parameter

H 0 :

Strength of uniform magnetic field

\( D_{\text{B}} \) :

Brownian parameter

\( D_{\text{T}} \) :

Thermophoretic diffusion parameter

\( R_{d} \) :

Radiation parameter

\( N_{\text{t}} \) :

Thermophoresis parameter

\( N_{b} \) :

Brownian motion parameter

\( M \) :

Magnetic parameter

\( Le \) :

Lewis Number

\( \Pr \) :

Prandtl number

\( E_{c} \) :

Eckert number

\( \rho \) :

Density

\( \sigma^{*} \) :

Stefan–Boltzmann constant

\( k^{*} \) :

Mean absorption coefficient

\( \rho_{\text{f}} \) :

Based fluid density

\( \alpha \) :

Based fluid thermal diffusivity

\( f(\eta ) \) :

Velocity Profile

\( \theta (\eta ) \) :

Temperature Profile

\( \phi (\eta ) \) :

Concentration Profile

\( u_{w} \left( x \right) \) :

Stretching velocity along horizontal axis

\( u_{\infty } (x) \) :

Free stream velocity

\( \left( {\rho c} \right)_{f} \) :

Heat capacity of fluid

\( \left( {\rho c} \right)_{p} \) :

Heat capacity of nanofluid

\( \gamma \) :

Biot number

\( \sigma_{\text{e}} \) :

Electrical Conductivity

\( \lambda \) :

Ratio of rates of free stream velocity to stretching sheet velocity

\( \tau \) :

Ratio of heat capacity of nanoparticle to heat capacity of fluid

References

  1. Kim, S.; Mor, G.K.; Paulose, M.; Varghese, O.K.; Shankar, K.; Grimes, C.A.: Broad spectrum light harvesting in TiO $ _2 $ nanotube array-hemicyanine dye–P3HT hybrid solid-state solar cells. IEEE J. Sel. Top. Quantum Electron. 16(6), 1573–1580 (2010)

    Article  Google Scholar 

  2. De Wild, J.; Duindam, T.F.; Rath, J.K.; Meijerink, A.; Van Sark, W.G.J.H.M.; Schropp, R.E.I.: Increased up conversion response in a-Si: H solar cells with broad-band light. IEEE J. Photovolt. 3(1), 17–21 (2013)

    Article  Google Scholar 

  3. Hua, X.; Zeng, Y.; Wang, W.; Shen, W.: Light absorption mechanism of c-Si/a-Si Half-coaxial nanowire arrays for nanostructured hetero junction photovoltaics. IEEE Trans. Electron Devices 61(12), 4007–4013 (2014)

    Article  Google Scholar 

  4. Pakhuruddin, M.Z.; Huang, J.; Dore, J.; Varlamov, S.: Light absorption enhancement in laser-crystallized silicon thin films on textured glass. IEEE J. Photovolt. 6(1), 159–165 (2016)

    Article  Google Scholar 

  5. Ishizaki, K.; Motohira, A.; De Zoysa, M.; Tanaka, Y.; Umeda, T.; Noda, S.: Microcrystalline-silicon solar cells with photonic crystals on the top surface. IEEE J. Photovolt. 7(4), 950–956 (2017)

    Article  Google Scholar 

  6. Chen, M.; Zhang, Y.; Cui, Y.; Zhang, F.; Qin, W.; Zhu, F.; Hao, Y.: Profiling light absorption enhancement in two-dimensional photonic-structured perovskite solar cells. IEEE J. Photovolt. 7(5), 1324–1328 (2017)

    Article  Google Scholar 

  7. Mehmood, U.; Al-Ahmed, A.; Afzaal, M.; Hakeem, A.S.; Haladu, S.A.; Al-Sulaiman, F.A.: Enhancement of the photovoltaic performance of a dye-sensitized solar cell by cosensitizing TiO2 photoanode with spray-coated uncapped PbS nanocrystals and ruthenizer. IEEE J. Photovolt. 8(2), 512–516 (2018)

    Article  Google Scholar 

  8. Liang, H.; Liu, Y.; Li, H.; Zhang, H.; Han, S.; Wu, Y.; Wang, Z.: All-fiber light intensity detector based on an ionic-liquid-adorned microstructured optical fiber. IEEE Photonics J. 10(2), 1–8 (2018)

    Article  Google Scholar 

  9. Ishii, S.; Sugavaneshwar, R.P.; Nagao, T.: Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 120(4), 2343–2348 (2016)

    Article  Google Scholar 

  10. Raffaelle, R.P.; Landi, B.J.; Evans, C.M.; Cress, C.D.; Andersen, J.; Castro, S.L.; Bailey, S.G.: Nanomaterial development for polymeric solar cells. In: 2006 IEEE 4th world conference on photovoltaic energy conference, (vol. 1, pp. 186–189). IEEE, 2006

  11. Gondal, M.A.; Rashid, S.G.; Dastageer, M.A.; Zubair, S.M.; Ali, M.A.; Lienhard, J.H.; McKinley, G.H.; Varanasi, K.K.: Sol-Gel synthesis of Au/Cu-TiO2 nanocomposite and their morphological and optical properties. IEEE Photonics J. 5(3), 2201908–2201908 (2013)

    Article  Google Scholar 

  12. Hogan, N.J.; Urban, A.S.; Ayala-Orozco, C.; Pimpinelli, A.; Nordlander, P.; Halas, N.J.: Nanoparticles heat through light localization. Nano Lett. 14(8), 4640–4645 (2014)

    Article  Google Scholar 

  13. Ishii, S.; Sugavaneshwar, R.P.; Chen, K.; Dao, T.D.; Nagao, T.: Solar water heating and vaporization with silicon nanoparticles at mie resonances. Opt. Mater. Express 6(2), 640–648 (2016)

    Article  Google Scholar 

  14. Hameed, A.H.; Salih, S.R.; Balage, S. :Direct absorption solar collector with direct heat exchange in inclined receiver unit.

  15. Wang, Z.; Tao, P.; Liu, Y.; Xu, H.; Ye, Q.; Hu, H.; Song, C.; Chen, Z.; Shang, W.; Deng, T.: Rapid charging of thermal energy storage materials through plasmonic heating. Sci. Rep 4, 6246 (2014)

    Article  Google Scholar 

  16. Mushtaq, A.; Mustafa, M.; Hayat, T.; Alsaedi, A.: Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: a numerical study. J. Taiwan Inst. Chem. Eng. 45(4), 1176–1183 (2014)

    Article  Google Scholar 

  17. Ghasemi, S.E.; Hatami, M.; Jing, D.; Ganji, D.D.: Nanoparticles effects on MHD fluid flow over a stretching sheet with solar radiation: a numerical study. J. Mol. Liq. 219, 890–896 (2016)

    Article  Google Scholar 

  18. Awan, S.E.; et al.: Dynamical analysis for nanofluid slip rheology with thermal radiation, heat generation/absorption and convective wall properties. AIP Adv. 8(7), 075122 (2018)

    Article  Google Scholar 

  19. Awan, S.E.; et al.: Numerical treatment for hydro-magnetic unsteady channel flow of nanofluid with heat transfer. Res. Phys. 9, 1543–1554 (2018)

    Google Scholar 

  20. Mahanthesh, B.; Gireesha, B.J.; Gorla, R.R.; Abbasi, F.M.; Shehzad, S.A.: Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J. Magn. Magn. Mater. 417, 189–196 (2016)

    Article  Google Scholar 

  21. Mahanthesh, B.; Shashikumar, N.S.; Gireesha, B.J.; Animasaun, I.L.: Effectiveness of Hall current and exponential heat source on unsteady heat transport of dusty TiO2-EO nanoliquid with nonlinear radiative heat. J. Comput. Des. Eng. 6(4), 551–561 (2019)

    Google Scholar 

  22. Awais, M.; et al.: Hydromagnetic mixed convective flow over a wall with variable thickness and Cattaneo–Christov heat flux model: OHAM analysis. Res. Phys. 8, 621–627 (2018)

    Google Scholar 

  23. Mahanthesh, B.; Gireesha, B.J.; Manjunatha, S.; Gorla, R.S.R.: Effect of viscous dissipation and Joule heating on three-dimensional mixed convection flow of nano fluid over a non-linear stretching sheet in presence of solar radiation. J. Nanofluids 6(4), 735–742 (2017)

    Article  Google Scholar 

  24. Mahanthesh, B.; Gireesha, B.J.; Animasaun, I.L.; Muhammad, T.; Shashikumar, N.S.: MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. Phys. Scr. 94(8), 085214 (2019)

    Article  Google Scholar 

  25. Lin, Y.; Jiang, Y.: Effects of Brownian motion and thermophoresis on nanofluids in a rotating circular groove: a numerical simulation. Int. J. Heat Mass Transf. 123, 569–582 (2018)

    Article  Google Scholar 

  26. Lin, Y.; Li, B.; Zheng, L.; Chen, G.: Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature. Powder Technol. 301, 379–386 (2016)

    Article  Google Scholar 

  27. Lin, Y.; Zheng, L.; Chen, G.: Unsteady flow and heat transfer of pseudo-plastic nanoliquid in a finite thin film on a stretching surface with variable thermal conductivity and viscous dissipation. Powder Technol. 274, 324–332 (2015)

    Article  Google Scholar 

  28. Lin, Y.; Zheng, L.; Zhang, X.; Ma, L.; Chen, G.: MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation. Int. J. Heat Mass Transf. 84, 903–911 (2015)

    Article  Google Scholar 

  29. Shashikumar, N.S.; Gireesha, B.J.; Mahanthesh, B.; Prasannakumara, B.C.: Brinkman–Forchheimer flow of SWCNT and MWCNT magneto-nanoliquids in a microchannel with multiple slips and Joule heating aspects. Multidiscip. Model. Mater. Struct. (2018). https://doi.org/10.1108/MMMS-01-2018-0005

    Article  Google Scholar 

  30. Mehmood, A.; et al.: Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery-Hamel flow. J. Taiwan Inst. Chem. Eng. 91, 57–85 (2018)

    Article  Google Scholar 

  31. Amala, S.; Mahanthesh, B.: Hybrid nanofluid flow over a vertical rotating plate in the presence of hall current, nonlinear convection and heat absorption. J Nanofluids 7(6), 1138–1148 (2018)

    Article  Google Scholar 

  32. Mahanthesh, B.; Gireesha, B.J.; Gorla, R.S.; Makinde, O.D.: Magnetohydrodynamic three-dimensional flow of nanofluids with slip and thermal radiation over a nonlinear stretching sheet: a numerical study. Neural Comput. Appl. 30(5), 1557–1567 (2018)

    Article  Google Scholar 

  33. Krupalakshmi, K.L.; Gireesha, B.J.; Mahanthesh, B.; Gorla, R.S.R.: Influence of nonlinear thermal radiation and magnetic field on upperconvected Maxwell fluid flow due to a convectively heated stretching sheet in the presence of dust particles. Commun. Numer. Anal (ISPACS) 2016, 57–73 (2016)

    Article  Google Scholar 

  34. Gireesha, B.J.; Gorla, R.S.R.; Mahanthesh, B.: Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring–Powell fluid over a stretching sheet. J. Nanofluids 4(4), 474–484 (2015)

    Article  Google Scholar 

  35. Mehmood, A.; et al.: Intelligent computing to analyze the dynamics of Magnetohydrodynamic flow over stretchable rotating disk model. Appl. Soft Comput. 67, 8–28 (2018)

    Article  Google Scholar 

  36. Ahmad, I.; et al.: Intelligent computing to solve fifth-order boundary value problem arising in induction motor models. Neural Comput. Appl. 29(7), 449–466 (2018)

    Article  Google Scholar 

  37. Raja, M.A.Z.; Ahmed, T.; Shah, S.M.: Intelligent computing strategy to analyze the dynamics of convective heat transfer in MHD slip flow over stretching surface involving carbon nanotubes. J. Taiwan Inst. Chem. Eng. 80, 935–953 (2017)

    Article  Google Scholar 

  38. Umar, M.; et al.: Intelligent computing for numerical treatment of nonlinear prey–predator models. Appl. Soft Comput. 80, 506–524 (2019)

    Article  Google Scholar 

  39. Raja, M.A.Z.; Niazi, S.A.; Butt, S.A.: An intelligent computing technique to analyze the vibrational dynamics of rotating electrical machine. Neurocomputing 219, 280–299 (2017)

    Article  Google Scholar 

  40. Mehmood, A.; et al.: Integrated intelligent computing paradigm for the dynamics of micropolar fluid flow with heat transfer in a permeable walled channel. Appl. Soft Comput. 79, 139–162 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammara Mehmood.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awan, S.E., Raja, M.A.Z., Mehmood, A. et al. Numerical Treatments to Analyze the Nonlinear Radiative Heat Transfer in MHD Nanofluid Flow with Solar Energy. Arab J Sci Eng 45, 4975–4994 (2020). https://doi.org/10.1007/s13369-020-04593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04593-5

Keywords

Navigation