Abstract
In the current study, the nonlinear radiative heat transfer effects due to solar radiation in magneto-hydrodynamic (MHD) nanofluidic problem are analyzed effectively by novel application of numerical computing by Adams predictor–corrector and explicit backward difference solvers. The governing relations of PDEs for the model are transformed into the system of ODEs, and numerical solvers are applied to the transformed system to study the effect of radiation parameter along with thermophoresis parameter, Brownian motion parameter, magnetic field parameter, Lewis number, Prandtl number, Eckert number and Biot number on velocity, temperature and nanoparticle concentration profiles. The comparative study of both solvers is provided in sufficient number of graphical and numerical illustrations to prove the worth in terms of accuracy, robustness and stability.
Similar content being viewed by others
Abbreviations
- \( (u,w) \) :
-
Components of velocity profile
- \( (U,W) \) :
-
Coordinate axes
- \( T \) :
-
Fluid temperature
- \( p \) :
-
Fluid pressure
- \( \upsilon \) :
-
Dynamic viscosity
- C :
-
Nanoparticle concentration
- \( q_{\text{r}} \) :
-
Radiative heat flux parameter
- H 0 :
-
Strength of uniform magnetic field
- \( D_{\text{B}} \) :
-
Brownian parameter
- \( D_{\text{T}} \) :
-
Thermophoretic diffusion parameter
- \( R_{d} \) :
-
Radiation parameter
- \( N_{\text{t}} \) :
-
Thermophoresis parameter
- \( N_{b} \) :
-
Brownian motion parameter
- \( M \) :
-
Magnetic parameter
- \( Le \) :
-
Lewis Number
- \( \Pr \) :
-
Prandtl number
- \( E_{c} \) :
-
Eckert number
- \( \rho \) :
-
Density
- \( \sigma^{*} \) :
-
Stefan–Boltzmann constant
- \( k^{*} \) :
-
Mean absorption coefficient
- \( \rho_{\text{f}} \) :
-
Based fluid density
- \( \alpha \) :
-
Based fluid thermal diffusivity
- \( f(\eta ) \) :
-
Velocity Profile
- \( \theta (\eta ) \) :
-
Temperature Profile
- \( \phi (\eta ) \) :
-
Concentration Profile
- \( u_{w} \left( x \right) \) :
-
Stretching velocity along horizontal axis
- \( u_{\infty } (x) \) :
-
Free stream velocity
- \( \left( {\rho c} \right)_{f} \) :
-
Heat capacity of fluid
- \( \left( {\rho c} \right)_{p} \) :
-
Heat capacity of nanofluid
- \( \gamma \) :
-
Biot number
- \( \sigma_{\text{e}} \) :
-
Electrical Conductivity
- \( \lambda \) :
-
Ratio of rates of free stream velocity to stretching sheet velocity
- \( \tau \) :
-
Ratio of heat capacity of nanoparticle to heat capacity of fluid
References
Kim, S.; Mor, G.K.; Paulose, M.; Varghese, O.K.; Shankar, K.; Grimes, C.A.: Broad spectrum light harvesting in TiO $ _2 $ nanotube array-hemicyanine dye–P3HT hybrid solid-state solar cells. IEEE J. Sel. Top. Quantum Electron. 16(6), 1573–1580 (2010)
De Wild, J.; Duindam, T.F.; Rath, J.K.; Meijerink, A.; Van Sark, W.G.J.H.M.; Schropp, R.E.I.: Increased up conversion response in a-Si: H solar cells with broad-band light. IEEE J. Photovolt. 3(1), 17–21 (2013)
Hua, X.; Zeng, Y.; Wang, W.; Shen, W.: Light absorption mechanism of c-Si/a-Si Half-coaxial nanowire arrays for nanostructured hetero junction photovoltaics. IEEE Trans. Electron Devices 61(12), 4007–4013 (2014)
Pakhuruddin, M.Z.; Huang, J.; Dore, J.; Varlamov, S.: Light absorption enhancement in laser-crystallized silicon thin films on textured glass. IEEE J. Photovolt. 6(1), 159–165 (2016)
Ishizaki, K.; Motohira, A.; De Zoysa, M.; Tanaka, Y.; Umeda, T.; Noda, S.: Microcrystalline-silicon solar cells with photonic crystals on the top surface. IEEE J. Photovolt. 7(4), 950–956 (2017)
Chen, M.; Zhang, Y.; Cui, Y.; Zhang, F.; Qin, W.; Zhu, F.; Hao, Y.: Profiling light absorption enhancement in two-dimensional photonic-structured perovskite solar cells. IEEE J. Photovolt. 7(5), 1324–1328 (2017)
Mehmood, U.; Al-Ahmed, A.; Afzaal, M.; Hakeem, A.S.; Haladu, S.A.; Al-Sulaiman, F.A.: Enhancement of the photovoltaic performance of a dye-sensitized solar cell by cosensitizing TiO2 photoanode with spray-coated uncapped PbS nanocrystals and ruthenizer. IEEE J. Photovolt. 8(2), 512–516 (2018)
Liang, H.; Liu, Y.; Li, H.; Zhang, H.; Han, S.; Wu, Y.; Wang, Z.: All-fiber light intensity detector based on an ionic-liquid-adorned microstructured optical fiber. IEEE Photonics J. 10(2), 1–8 (2018)
Ishii, S.; Sugavaneshwar, R.P.; Nagao, T.: Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 120(4), 2343–2348 (2016)
Raffaelle, R.P.; Landi, B.J.; Evans, C.M.; Cress, C.D.; Andersen, J.; Castro, S.L.; Bailey, S.G.: Nanomaterial development for polymeric solar cells. In: 2006 IEEE 4th world conference on photovoltaic energy conference, (vol. 1, pp. 186–189). IEEE, 2006
Gondal, M.A.; Rashid, S.G.; Dastageer, M.A.; Zubair, S.M.; Ali, M.A.; Lienhard, J.H.; McKinley, G.H.; Varanasi, K.K.: Sol-Gel synthesis of Au/Cu-TiO2 nanocomposite and their morphological and optical properties. IEEE Photonics J. 5(3), 2201908–2201908 (2013)
Hogan, N.J.; Urban, A.S.; Ayala-Orozco, C.; Pimpinelli, A.; Nordlander, P.; Halas, N.J.: Nanoparticles heat through light localization. Nano Lett. 14(8), 4640–4645 (2014)
Ishii, S.; Sugavaneshwar, R.P.; Chen, K.; Dao, T.D.; Nagao, T.: Solar water heating and vaporization with silicon nanoparticles at mie resonances. Opt. Mater. Express 6(2), 640–648 (2016)
Hameed, A.H.; Salih, S.R.; Balage, S. :Direct absorption solar collector with direct heat exchange in inclined receiver unit.
Wang, Z.; Tao, P.; Liu, Y.; Xu, H.; Ye, Q.; Hu, H.; Song, C.; Chen, Z.; Shang, W.; Deng, T.: Rapid charging of thermal energy storage materials through plasmonic heating. Sci. Rep 4, 6246 (2014)
Mushtaq, A.; Mustafa, M.; Hayat, T.; Alsaedi, A.: Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: a numerical study. J. Taiwan Inst. Chem. Eng. 45(4), 1176–1183 (2014)
Ghasemi, S.E.; Hatami, M.; Jing, D.; Ganji, D.D.: Nanoparticles effects on MHD fluid flow over a stretching sheet with solar radiation: a numerical study. J. Mol. Liq. 219, 890–896 (2016)
Awan, S.E.; et al.: Dynamical analysis for nanofluid slip rheology with thermal radiation, heat generation/absorption and convective wall properties. AIP Adv. 8(7), 075122 (2018)
Awan, S.E.; et al.: Numerical treatment for hydro-magnetic unsteady channel flow of nanofluid with heat transfer. Res. Phys. 9, 1543–1554 (2018)
Mahanthesh, B.; Gireesha, B.J.; Gorla, R.R.; Abbasi, F.M.; Shehzad, S.A.: Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J. Magn. Magn. Mater. 417, 189–196 (2016)
Mahanthesh, B.; Shashikumar, N.S.; Gireesha, B.J.; Animasaun, I.L.: Effectiveness of Hall current and exponential heat source on unsteady heat transport of dusty TiO2-EO nanoliquid with nonlinear radiative heat. J. Comput. Des. Eng. 6(4), 551–561 (2019)
Awais, M.; et al.: Hydromagnetic mixed convective flow over a wall with variable thickness and Cattaneo–Christov heat flux model: OHAM analysis. Res. Phys. 8, 621–627 (2018)
Mahanthesh, B.; Gireesha, B.J.; Manjunatha, S.; Gorla, R.S.R.: Effect of viscous dissipation and Joule heating on three-dimensional mixed convection flow of nano fluid over a non-linear stretching sheet in presence of solar radiation. J. Nanofluids 6(4), 735–742 (2017)
Mahanthesh, B.; Gireesha, B.J.; Animasaun, I.L.; Muhammad, T.; Shashikumar, N.S.: MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. Phys. Scr. 94(8), 085214 (2019)
Lin, Y.; Jiang, Y.: Effects of Brownian motion and thermophoresis on nanofluids in a rotating circular groove: a numerical simulation. Int. J. Heat Mass Transf. 123, 569–582 (2018)
Lin, Y.; Li, B.; Zheng, L.; Chen, G.: Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature. Powder Technol. 301, 379–386 (2016)
Lin, Y.; Zheng, L.; Chen, G.: Unsteady flow and heat transfer of pseudo-plastic nanoliquid in a finite thin film on a stretching surface with variable thermal conductivity and viscous dissipation. Powder Technol. 274, 324–332 (2015)
Lin, Y.; Zheng, L.; Zhang, X.; Ma, L.; Chen, G.: MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation. Int. J. Heat Mass Transf. 84, 903–911 (2015)
Shashikumar, N.S.; Gireesha, B.J.; Mahanthesh, B.; Prasannakumara, B.C.: Brinkman–Forchheimer flow of SWCNT and MWCNT magneto-nanoliquids in a microchannel with multiple slips and Joule heating aspects. Multidiscip. Model. Mater. Struct. (2018). https://doi.org/10.1108/MMMS-01-2018-0005
Mehmood, A.; et al.: Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery-Hamel flow. J. Taiwan Inst. Chem. Eng. 91, 57–85 (2018)
Amala, S.; Mahanthesh, B.: Hybrid nanofluid flow over a vertical rotating plate in the presence of hall current, nonlinear convection and heat absorption. J Nanofluids 7(6), 1138–1148 (2018)
Mahanthesh, B.; Gireesha, B.J.; Gorla, R.S.; Makinde, O.D.: Magnetohydrodynamic three-dimensional flow of nanofluids with slip and thermal radiation over a nonlinear stretching sheet: a numerical study. Neural Comput. Appl. 30(5), 1557–1567 (2018)
Krupalakshmi, K.L.; Gireesha, B.J.; Mahanthesh, B.; Gorla, R.S.R.: Influence of nonlinear thermal radiation and magnetic field on upperconvected Maxwell fluid flow due to a convectively heated stretching sheet in the presence of dust particles. Commun. Numer. Anal (ISPACS) 2016, 57–73 (2016)
Gireesha, B.J.; Gorla, R.S.R.; Mahanthesh, B.: Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring–Powell fluid over a stretching sheet. J. Nanofluids 4(4), 474–484 (2015)
Mehmood, A.; et al.: Intelligent computing to analyze the dynamics of Magnetohydrodynamic flow over stretchable rotating disk model. Appl. Soft Comput. 67, 8–28 (2018)
Ahmad, I.; et al.: Intelligent computing to solve fifth-order boundary value problem arising in induction motor models. Neural Comput. Appl. 29(7), 449–466 (2018)
Raja, M.A.Z.; Ahmed, T.; Shah, S.M.: Intelligent computing strategy to analyze the dynamics of convective heat transfer in MHD slip flow over stretching surface involving carbon nanotubes. J. Taiwan Inst. Chem. Eng. 80, 935–953 (2017)
Umar, M.; et al.: Intelligent computing for numerical treatment of nonlinear prey–predator models. Appl. Soft Comput. 80, 506–524 (2019)
Raja, M.A.Z.; Niazi, S.A.; Butt, S.A.: An intelligent computing technique to analyze the vibrational dynamics of rotating electrical machine. Neurocomputing 219, 280–299 (2017)
Mehmood, A.; et al.: Integrated intelligent computing paradigm for the dynamics of micropolar fluid flow with heat transfer in a permeable walled channel. Appl. Soft Comput. 79, 139–162 (2019)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Rights and permissions
About this article
Cite this article
Awan, S.E., Raja, M.A.Z., Mehmood, A. et al. Numerical Treatments to Analyze the Nonlinear Radiative Heat Transfer in MHD Nanofluid Flow with Solar Energy. Arab J Sci Eng 45, 4975–4994 (2020). https://doi.org/10.1007/s13369-020-04593-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-020-04593-5