Skip to main content

Advertisement

Log in

Response Surface Optimization of Multilayer Graphene Growth on Alumina-Supported Bimetallic Cobalt–Nickel Substrate

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study investigates the optimization of multilayer graphene (MLG) growth on Co–Ni/Al2O3 substrate. The MLG synthesized by chemical vapor deposition technique (CVD) was characterized using various instrument techniques. The surface area and pore volume of the MLG were estimated as ~ 642 m2/g and ~ 2.7 cm3/g, respectively. The Raman spectrometric analysis showed evidence of MLG. The effects of parameters such as temperature, Co–Ni composition and ethanol flow rate were investigated using response surface methodology (RSM) and central composite design. The maximum MLG yield of 77% was attained at optimum conditions of 800 °C, Co–Ni composition of 0.3/0.7 and ethanol flow rate of 11 ml/min. The analysis of variance (ANOVA) results showed that the RSM quadratic model is significant with a p value < 0.0001. The coefficient of determination (R2) values of 0.9694 revealed the reliability of the RSM model. The potential of CVD as a technique to synthesize MLG growth of a highly ordered crystallinity structure has been demonstrated in this study. The resulting MLG films are promising materials for the use in improving graphene-based electronics, sensing and energy devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Han, S.A.; Lee, K.H.; Kim, T.H.; Seung, W.; Lee, S.K.; Choi, S.; Kumar, B.; Bhatia, R.; Shin, H.J.; Lee, W.J.; Kim, S.: Hexagonal boron nitride assisted growth of stoichiometric Al2O3 dielectric on graphene for triboelectric nanogenerators. Nano Energy 12, 556–566 (2015). https://doi.org/10.1016/j.nanoen.2015.01.030

    Article  Google Scholar 

  2. Liu, W.-W.; Chai, S.-P.; Mohamed, A.R.; Hashim, U.: Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J Ind Eng Chem. 20, 1171–1185 (2014). https://doi.org/10.1016/j.jiec.2013.08.028

    Article  Google Scholar 

  3. Chen, X.; Zhang, L.; Chen, S.: Large area CVD growth of graphene. Synth. Met. 210, 95–108 (2015). https://doi.org/10.1016/j.synthmet.2015.07.005

    Article  Google Scholar 

  4. Cheng, H.: Super-clean graphene films. Acta Phys. Chim. Sin. 36, 1909042 (2020)

    Article  Google Scholar 

  5. Avouris, P.; Dimitrakopoulos, C.: Graphene: synthesis and applications. Mater. Today 15, 86–97 (2012). https://doi.org/10.1016/S1369-7021(12)70044-5

    Article  Google Scholar 

  6. Williams, G.; Kamat, P.V.: Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25, 13869–13873 (2009). https://doi.org/10.1021/la900905h

    Article  Google Scholar 

  7. Wei, F.; Bi, H.; Jiao, S.; He, X.: Interconnected graphene-like nanosheets for supercapacitors. Acta Phys. Chim. Sin. 36, 1903043 (2020)

    Article  Google Scholar 

  8. Wang, J.-W.; Zhang, W.-K.; Jiao, C.; Su, F.-Y.; Chen, C.-M.; Guo, C.-L.; Chua, H.T.; Eahon, S.: Activated carbon-based supercapacitors with a reduced graphene oxide additive: preparation and properties. J. Nanosci. Nanotechnol. 20, 4073–4083 (2020). https://doi.org/10.1166/jnn.2020.17688

    Article  Google Scholar 

  9. Chawla, R.; Singhal, P.; Garg, A.K.: Design and analysis of multi junction solar photovoltaic cell with graphene as an intermediate layer. J. Nanosci. Nanotechnol. 20, 3693–3702 (2019). https://doi.org/10.1166/jnn.2020.17512

    Article  Google Scholar 

  10. Gao, Z.; Ducos, P.; Ye, H.; Zauberman, J.; Sriram, A.; Yang, X.; Wang, Z.; Mitchell, M.W.; Lekkas, D.; Brisson, D.; Johnson, A.C.: Graphene transistor arrays functionalized with genetically engineered antibody fragments for Lyme disease diagnosis. 2D Mater. 7, 24001 (2020). https://doi.org/10.1088/2053-1583/ab5dce

    Article  Google Scholar 

  11. Prayitno, T.B.; Budi, E.: Applied electric field on zigzag graphene nanoribbons: reduction of spin stiffness and appearance of spiral spin density waves. J. Phys. Condens. Matter. 32, 105802 (2019). https://doi.org/10.1088/1361-648x/ab58a8

    Article  Google Scholar 

  12. Ghosh, K.; Rahaman, H.; Bhattacharyya, P.: Prediction and implementation of graphene and other two-dimensional material based superconductors: a review. IEEE Trans. Appl. Supercond. 30, 7400109 (2020). https://doi.org/10.1109/TASC.2019.2954617

    Article  Google Scholar 

  13. Zhang, J.; Li, J.; Wang, A.; Edwards, B.J.; Yin, H.; Li, Z.; Ding, Y.: Improvement of the tribological properties of a lithium-based grease by addition of graphene. J. Nanosci. Nanotechnol. 18, 7163–7169 (2018). https://doi.org/10.1166/jnn.2018.15511

    Article  Google Scholar 

  14. Nguyen, V.T.; Le, H.D.; Nguyen, V.C.; Tam Ngo, T.T.; Le, D.Q.; Nguyen, X.N.; Phan, N.M.: Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 035012 (2013). https://doi.org/10.1088/2043-6262/4/3/035012

    Article  Google Scholar 

  15. Niilisk, A.; Kozlova, J.; Alles, H.; Aarik, J.; Sammelselg, V.: Raman characterization of stacking in multi-layer graphene grown on Ni. Carbon 98, 658–665 (2016). https://doi.org/10.1016/j.carbon.2015.11.050

    Article  Google Scholar 

  16. Zhang, Y.H.; Chen, Y.B.; Zhou, K.G.; Liu, C.H.; Zeng, J.; Zhang, H.L.; Peng, Y.: Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20, 185504 (2009). https://doi.org/10.1088/0957-4484/20/18/185504

    Article  Google Scholar 

  17. Liu, J.; Tao, L.; Yang, W.; Li, D.; Boyer, C.; Wuhrer, R.; Braet, F.; Davis, T.P.: Synthesis, characterization, and multilayer assembly of pH sensitive graphene-polymer nanocomposites. Langmuir 26, 10068–10075 (2010). https://doi.org/10.1021/la1001978

    Article  Google Scholar 

  18. Zhao, H.; Hui, K.S.; Hui, K.N.: Synthesis of nitrogen-doped multilayer graphene from milk powder with melamine and their application to fuel cells. Carbon 76, 1–9 (2014). https://doi.org/10.1016/j.carbon.2014.04.007

    Article  Google Scholar 

  19. Somani, P.R.; Somani, S.P.; Umeno, M.: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 56–59 (2006). https://doi.org/10.1016/j.cplett.2006.06.081

    Article  Google Scholar 

  20. Bi, H.; Sun, S.; Huang, F.; Xie, X.; Jiang, M.: Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. J. Mater. Chem. 22, 411 (2012). https://doi.org/10.1039/c1jm14778a

    Article  Google Scholar 

  21. Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y.P.; Pei, S.S.: Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 1–4 (2008). https://doi.org/10.1063/1.2982585

    Article  Google Scholar 

  22. Seah, C.-M.; Chai, S.-P.; Mohamed, A.R.: Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70, 1–21 (2014). https://doi.org/10.1016/j.carbon.2013.12.073

    Article  Google Scholar 

  23. Chai, S.; Hussein, S.; Zein, S.; Mohamed, A.R.: The effect of catalyst calcination temperature on the diameter of carbon nanotubes synthesized by the decomposition of methane. Carbon 45, 1535–1541 (2007). https://doi.org/10.1016/j.carbon.2007.03.020

    Article  Google Scholar 

  24. Ueno, K.; Karasawa, Y.; Kuwahara, S.; Baba, S.; Hanai, H.; Yamazaki, Y.; Sakai, T.: Characteristics of a cataphoresis HeCa+ recombination laser. Jpn. J. Appl. Phys. 14206, 1–4 (2009). https://doi.org/10.1088/0256-307X/26/1/014206

    Article  Google Scholar 

  25. Hadi, A.; Karimi-Sabet, J.; Moosavian, S.M.A.; Ghorbanian, S.: Optimization of graphene production by exfoliation of graphite in supercritical ethanol: a response surface methodology approach. J. Supercrit. Fluids 107, 92–105 (2016). https://doi.org/10.1016/j.supflu.2015.08.022

    Article  Google Scholar 

  26. Rosenzweig, S.; Sorial, G.A.; Sahle-Demessie, E.; McAvoy, D.C.: Optimizing the physical-chemical properties of carbon nanotubes (CNT) and graphene nanoplatelets (GNP) on Cu(II) adsorption. J. Hazard. Mater. 279, 410–417 (2014). https://doi.org/10.1016/j.jhazmat.2014.07.015

    Article  Google Scholar 

  27. Edwards, R.S.; Coleman, K.S.: Graphene synthesis: relationship to applications. Nanoscale 5, 38–51 (2013). https://doi.org/10.1039/C2NR32629A

    Article  Google Scholar 

  28. Chai, S.-P.; Lee, K.-Y.; Ichikawa, S.; Mohamed, A.R.: Synthesis of carbon nanotubes by methane decomposition over Co–Mo/Al2O3: process study and optimization using response surface methodology. Appl. Catal. A Gen. 396, 52–58 (2011). https://doi.org/10.1016/j.apcata.2011.01.038

    Article  Google Scholar 

  29. Jo, G.; Choe, M.; Cho, C.Y.; Kim, J.H.; Park, W.; Lee, S.; Hong, W.K.; Kim, T.W.; Park, S.J.; Hong, B.H.; Kahng, Y.H.: Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology. 21, 175201 (2010). https://doi.org/10.1088/0957-4484/21/17/175201

    Article  Google Scholar 

  30. Jiang, J.; Lin, Z.; Ye, X.; Zhong, M.; Huang, T.; Zhu, H.: Graphene synthesis by laser-assisted chemical vapor deposition on Ni plate and the effect of process parameters on uniform graphene growth. Thin Solid Films 556, 206–210 (2014). https://doi.org/10.1016/j.tsf.2014.01.078

    Article  Google Scholar 

  31. Aquilanti, V.; Mundim, K.C.; Elango, M.; Kleijn, S.; Kasai, T.: Temperature dependence of chemical and biophysical rate processes: phenomenological approach to deviations from Arrhenius law. Chem. Phys. Lett. 498, 209–213 (2010). https://doi.org/10.1016/j.cplett.2010.08.035

    Article  Google Scholar 

  32. Li, M.; Liu, L.; Xiong, Y.; Liu, X.; Nsabimana, A.; Bo, X.; Guo, L.: Bimetallic MCo (M = Cu, Fe, Ni, and Mn) nanoparticles doped-carbon nanofibers synthetized by electrospinning for nonenzymatic glucose detection. Sens. Actuators B Chem. 207, 614–622 (2015). https://doi.org/10.1016/j.snb.2014.10.092

    Article  Google Scholar 

  33. Jensen, H.; Pedersen, J.H.; Jorgensen, J.E.; Pedersen, J.S.; Jorgensen, K.D.; Iversen, S.B.; Sogaard, E.G.: Determination of size distributions in nanosized powders by TEM, XRD, and SAXS. J. Exp. Nanosci. 1, 355–373 (2006). https://doi.org/10.1080/17458080600752482

    Article  Google Scholar 

  34. Mattevi, C.; Kim, H.; Chhowalla, M.: A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324–3334 (2011). https://doi.org/10.1039/C0JM02126A

    Article  Google Scholar 

  35. Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. B 112, 8192–8195 (2008). https://doi.org/10.1021/jp710931h

    Article  Google Scholar 

  36. Donohue, M.; Aranovich, G.: Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 76–77, 137–152 (1998). https://doi.org/10.1016/S0001-8686(98)00044-X

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the funding from Malaysia’s Ministry of Higher Education (MOHE), provided through the Fundamental Research Grant Scheme (FRGS) Vot. No. 5524471.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bamidele Victor Ayodele.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaffar, M.A., Rashid, S.A., Ayodele, B.V. et al. Response Surface Optimization of Multilayer Graphene Growth on Alumina-Supported Bimetallic Cobalt–Nickel Substrate. Arab J Sci Eng 45, 7455–7465 (2020). https://doi.org/10.1007/s13369-020-04586-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04586-4

Keywords

Navigation