Skip to main content

Advertisement

Log in

Performance Analysis of Encoderless DTC of IPMSM for Wide Operating Range

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a look-up table-based direct torque control (DTC) of interior permanent magnet synchronous motor (IPMSM) drive is reported. An approach is made to develop a sensorless four-quadrant electric drive for a wide operating speed range. In order to ensure efficient operation of IPMSM, maximum torque per ampere and field weakening algorithms are employed. The constraints associated with pure integrator in DTC are discussed, and an adaptive controller-based approach to estimating stator flux is proposed. A bidirectional DC–DC converter is implemented to allow four-quadrant operation of drive. In order to realize sensorless operation, stator current-based model reference adaptive control is employed to estimate the motor speed. Speed reversal, torque reversal, above-base-speed operation and low-speed operation of IPMSM drive are considered in this paper. The proposed algorithm is implemented in the MATLAB and Simulink, and the soundness of the suggested estimator is presented by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(v_{ds}^{r} ,v_{qs}^{r}\) :

dq-axis voltage in rotor reference frame

\(V_{\text{s}} ,V_{\text{s}}^{\text{max} }\) :

Stator voltage space vector and its maximum value

\(v_{\text{s}}\) :

Instantaneous value of stator voltage

\(V_{\text{DC}}\) :

DC link voltage

\(i_{qs}^{r}\) :

dq-axis current in rotor reference frame

\(I_{\text{s}} ,I_{\text{s}}^{\text{max} }\) :

Stator current space vector and its maximum value

\(i_{\text{s}}\) :

Instantaneous value of stator current

\(i_{\alpha } , i_{\beta }\) :

Alpha–beta component of stator current vector

\(\psi_{af}\) :

Permanent magnet flux linkage

\(\psi_{s} , \psi_{\alpha } , \psi_{\beta }\) :

Stator flux linkage and its alpha–beta component

\(T_{\text{e}}\) :

Electromagnetic torque

\(\omega_{\text{r}}\) :

Rotor speed

\(L_{\text{m}}\) :

Mutual inductance

\(L_{d}\) :

d-axis inductance

\(L_{q}\) :

q-axis inductances

\(R_{\text{s}}\) :

Stator resistance

P :

Number of poles

References

  1. Bose, B.K.; Szczesny, P.M.: A microcomputer-based control and simulation of an advanced IPM synchronous machine drive system for electric vehicle propulsion. IEEE Trans. Ind. Electron. 35(4), 547–559 (1988)

    Article  Google Scholar 

  2. Takahashi, I.; Noguchi, T.: A new quick-response and high efficiency control strategy of induction motor. IEEE Trans. Ind. Appl. 22(5), 820–827 (1986)

    Article  Google Scholar 

  3. Depenbrok, M.: Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans. Power Electron. 3(4), 420–429 (1988)

    Article  Google Scholar 

  4. Hoang, L.H.: Comparison of field-oriented control and direct torque control for induction motor drives. In: Conference Recordings of IEEE 34th lAS Annual Meeting, vol. 2, pp. 1245–1252 (1999)

  5. Casadei, D.; Profumo, F.; Serra, G.; Tani, A.: FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans. Power Electron. 17(5), 779–787 (2002)

    Article  Google Scholar 

  6. Habetler, T.G.; Profumo, F.; Pastorelli, M.; Tolbert, L.M.: Direct torque control of induction machines using space vector modulation. IEEE Trans. Ind. Appl. 28(5), 1045–1053 (1992)

    Article  Google Scholar 

  7. Kenny, B.H.; Lorenz, R.D.: Stator- and rotor-flux-based deadbeat direct torque control of induction machines. IEEE Trans. Ind. Appl. 39(4), 1093–1101 (2003)

    Article  Google Scholar 

  8. Lai, Y.-S.; Chen, J.-H.: A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction. IEEE Trans. Energy Convers. 16(3), 220–227 (2001)

    Article  Google Scholar 

  9. Lascu, C.; Trzynadlowski, A.: Combining the principles of sliding mode direct torque control and space-vector modulation in high-performance sensorless ac drive. IEEE Trans. Ind. Appl. 40(1), 170–177 (2004)

    Article  Google Scholar 

  10. de Jesús Rubio, J.: Robust feedback linearization for nonlinear processes control. ISA Trans. 74, 155–164 (2018)

    Article  Google Scholar 

  11. de Jesús Rubio, J.; Ochoa, G.; Mujica-Vargas, D.; Garcia, E.; Balcazar, R.; Elias, I.; Cruz, D.R.; Juarez, C.F.; Aguilar, A.; Novoa, J.F.: Structure regulator for the perturbations attenuation in a quadrotor. IEEE Access 7(1), 138244–138252 (2019)

    Article  Google Scholar 

  12. Mir, S.A.; Zinger, D.S.; Elbuluk, M.E.: Fuzzy controller for inverter fed induction machines. IEEE Trans. Ind. Appl. 30(1), 78–84 (1994)

    Article  Google Scholar 

  13. Xia, Y.; Oghanna, W.: Fuzzy direct torque control of induction motor with stator flux estimation compensation. Proc. IEEE Ind. Electron. Control Instrum. 2, 505–510 (1997)

    Article  Google Scholar 

  14. Grabowski, P.Z.; Kazmierkowski, M.P.; Bose, B.K.; Blaabjerg, F.: A simple direct torque neuro-fuzzy control of PWM inverter-fed induction motor drive. IEEE Trans. Ind. Electron. 47(4), 863–870 (2000)

    Article  Google Scholar 

  15. Bouhoune, K.; Yazid, K.; Boucherit, M.S.: ANN-based DTC scheme to improve the dynamic performance of an IM drive. In: 7th IET International Conference on Power Electronics, Machines and Drives (PEMD) (2014)

  16. Kumar, J.; Kumar, V.; Rana, K.P.S.: Design of robust fractional order fuzzy sliding mode PID controller for two link robotic manipulator system. J. Intell. Fuzzy Syst. 35(5), 5301–5315 (2018)

    Article  Google Scholar 

  17. Rubio, J. d. J.; Aguilar, A.; Meda-Campaña, J.A.; Ochoa, G.; Balcazar, R.; Lopez, J.: An electricity generator based on the interaction of static and dynamic magnets. IEEE Trans. Magn. 55(8), 1–11 (2019), Art no. 8204511

  18. Geyer, T.; Papafotiou, G.; Morari, M.: Model predictive direct torque control-part I: concept algorithm and analysis. IEEE Trans. Power Electron. 56(6), 1894–1905 (2009)

    Google Scholar 

  19. Preindl, M.; Bolognani, S.: Model predictive direct torque control with finite control set for PMSM drive systems part 1: maximum torque per ampere operation. IEEE Trans. Ind. Inf. 9(4), 1912–1921 (2013)

    Article  Google Scholar 

  20. Preindl, M.; Bolognani, S.: Model predictive direct torque control with finite control set for PMSM drive systems part 2: field weakening operation. IEEE Trans. Ind. Inf. 9(2), 648–657 (2013)

    Article  Google Scholar 

  21. Vafaie, M.H.; Dehkordi, B.M.; Moallem, P.; Kiyoumarsi, A.: Minimizing torque and flux ripples and improving dynamic response of PMSM using a voltage vector with optimal parameters. IEEE Trans. Ind. Electron. 63(6), 3876–3888 (2016)

    Article  Google Scholar 

  22. Vafaie, M.H.; Dehkordi, B.M.; Moallem, P.; Kiyoumarsi, A.: A new predictive direct torque control method for improving both steady-state and transient state operations of the PMSM. IEEE Trans. Power Electron. 31(5), 3738–3753 (2016)

    Article  Google Scholar 

  23. Zhang, Y.; Zhu, J.: Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency. IEEE Trans. Power Electron. 26(1), 235–248 (2011)

    Article  Google Scholar 

  24. Zhang, Y.; Zhu, J.: A novel duty cycle control strategy to reduce both torque and flux ripples for DTC of permanent magnet synchronous motor drives with switching frequency reduction. IEEE Trans. Power Electron. 26(10), 3055–3067 (2011)

    Article  Google Scholar 

  25. Xia, C.; Zhao, J.; Yan, Y.; Shi, T.: A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction. IEEE Trans. Ind. Electron. 61(6), 2700–2713 (2014)

    Article  Google Scholar 

  26. Niu, F.; Li, K.; Wang, Y.: Direct torque control for permanent-magnet synchronous machines based on duty ratio modulation. IEEE Trans. Ind. Electron. 62(10), 6160–6170 (2015)

    Article  Google Scholar 

  27. Singh, B.; Jain, S.; Dwivedi, S.: Torque ripple reduction technique with improved flux response for a direct torque control induction motor drive. IET Power Electron. 6(2), 326–342 (2013)

    Article  Google Scholar 

  28. Schibli, N.P.; Nguyen, T.; Rufer, A.C.: A three-phase multilevel converter for high-power induction motors. IEEE Trans. Power Electron. 13(5), 978–986 (1998)

    Article  Google Scholar 

  29. Brando, G.; Rizzo, R.: An optimized algorithm for torque oscillation reduction in DTC-induction motor drives using 3-level NPC inverter. In: IEEE International Symposium on Industrial Electronics (2014)

  30. Ouboubker, L.; Khafallah, M.; Lamterkati, J.; Chikh, K.: Comparison between DTC using a two-level inverters and DTC using a three level inverters of Induction Motor. In: International Conference on Multimedia Computing and Systems (ICMCS) (2014)

  31. Messaïf, I.; Berkouk, E.M.; Saadia, N.: Ripple reduction in DTC drives by using a three-level NPC VSI. In: 14th IEEE International Conference on Electronics, Circuits and Systems (2017)

  32. Nasir Uddin, M.; Radwan, T.S.; Azizur Rahman, M.: Performance of interior permanent magnet motor drive over wide speed range. IEEE Trans. Energy Convers. 17(1), 79–84 (2002)

    Article  Google Scholar 

  33. Butt, C.B.; Ashraful Hoque, M.; Azizur Rahman, M.: Simplified fuzzy-logic-based MTPA speed control of IPMSM drive. IEEE Trans. Ind. Appl. 40(6), 1529–1535 (2004)

    Article  Google Scholar 

  34. Mohamed, Y.A.-R.I.; Lee, T.K.: Adaptive self-tuning MTPA vector controller for IPMSM drive system”. IEEE Trans. Energy Convers. 21(3), 636–644 (2006)

    Article  Google Scholar 

  35. Anton, D.; Young-Kwan, K.; Sang-Joon, L.; Sang-Taek, L.: Robust self-tuning MTPA algorithm for IPMSM drives. In: 34th Annual Conference of IEEE Industrial Electronics (2008)

  36. Zhong, L.; Rahman, M.F.; Lim, K.W.: A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening. In: IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting (1997)

  37. Xingming, Z.; Xuhui, W.; Feng, Z.; Huawei, Z.; Baocang, Z.: A robust field weakening method for direct torque controlled PMSM drive system. In: International Conference on Electrical Machines and Systems (2011)

  38. Park, C.-W.; Kwon, W.-H.: Simple and robust speed sensorless vector control of induction motor using stator current based MRAC. Electr. Power Syst. Res. 71(3), 257–266 (2004)

    Article  Google Scholar 

  39. Agrawal, J.; Bodkhe, S.: Speed sensorless vector controlled smpmsm drive based on modified MRAS with single current sensor. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1627915

    Article  Google Scholar 

  40. Maiti, S.; Chakraborty, C.; Hori, Y.; Ta, M.C.: Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power. IEEE Trans. Ind. Electron. 55(2), 594–601 (2008)

    Article  Google Scholar 

  41. Sahhary, B.; Siemens; Ma, Z.; Kennel, R.: Sensorless speed control of PMSM based on MRAC using active power. EPE J. 25(2), 19–25 (2015). https://doi.org/10.1080/09398368.2015.11835469

    Article  Google Scholar 

  42. Krishnan, R.: Electric motor drives: modeling, analysis and control. Pearson Education India, ISBN-13: 978-9332549715

  43. Sharma, T.; Bhattacharya, A.: Sensorless direct torque control of PMSM drive for EV application. In: 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE) (2018)

  44. Pillay, R.K.: Modeling simulation and analysis of permanent magnet synchronous motor drives. Part-I: The permanent magnet synchronous motor drive. IEEE Trans. Ind. Appl. 25(2), 65–273 (1989)

    Google Scholar 

  45. Bose, B.K.: Power Electronics and Variable Frequency Drives Technology and Applications. IEEE press, New York (1996)

    Book  Google Scholar 

  46. Kang, J.; Zeng, X.; Wu, Y.; Hu, D.: Study of position sensorless control of PMSM based on MRAS. In: Proceedings of IEEE International Conference on Industrial Technology, pp. 1–4 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshi Sharma.

Appendix I

Appendix I

The following motor parameters used for the simulation analysis

Parameters

Value

R s

1.4 Ω

L d

5.8 mH

L q

6.66 mH

λ af

0.1546 wb

P

6

J

0.00176 Kg m2

B

0.00038818 Nms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Bhattacharya, A. Performance Analysis of Encoderless DTC of IPMSM for Wide Operating Range. Arab J Sci Eng 45, 6501–6515 (2020). https://doi.org/10.1007/s13369-020-04550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04550-2

Keywords

Navigation