Skip to main content

Advertisement

Log in

Isolation and Characterization of Bacillus spp. Endowed with Multifarious Plant Growth-Promoting Traits and Their Potential Effect on Tomato (Lycopersicon esculentum) Seedlings

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In agriculture, Bacillus species are widely used to stimulate plant growth and act as an efficient and ecologically sound tool for protecting the plant from pathogens and other environmental stresses. This study reveals the plant growth-promoting (PGP) ability of bacteria isolated from the rhizosphere soil of the tomato (Lycopersicon esculentum). The isolates were identified as Bacillus species based on a 16S rRNA gene sequence analysis. Among the PGP attributes, the isolates were found to be positive for indole acetic acid (IAA) production, phosphate solubilization, siderophore production, ammonia production, and nitrogen fixation. The isolates were found negative for zinc and potassium solubilization. The quantitative estimation of IAA production ranged from 10.28 to 25.81 µg/ml, solubilization of inorganic phosphorous ranged from 0.12 to 13.83 μg/ml, and siderophore production ranged from 1.39 to 78.79%. The isolates also had the ability to produce lytic enzymes such as amylase, cellulase, lipase, protease, and pectinase and biocontrol activity against Fusarium oxysporum. The inoculation PGP Bacillus improved germination rate, seedling vigor index, and a range of growth parameters in the tomato (L. esculentum) compared to uninoculated control plants. These findings give an insight into the ways to use PGP bacteria as an alternative to chemicals and pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Qiao, J.-Q.; Wu, H.-J.; Huo, R.; Gao, X.-W.; Borriss, R.: Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chem. Biol. Technol. Agric. 1, 1–14 (2014)

    Article  Google Scholar 

  2. Kloepper, J.W.; Leong, J.; Teintze, M.; Schroth, M.N.: Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286, 885–886 (1980)

    Article  Google Scholar 

  3. Qiao, J.; Yu, X.; Liang, X.; Liu, Y.; Borriss, R.; Liu, Y.: Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol. 17, 131 (2017)

    Article  Google Scholar 

  4. Bhattacharyya, P.N.; Jha, D.K.: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28, 1327–1350 (2012)

    Article  Google Scholar 

  5. Fravel, D.R.: Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43, 337–359 (2005)

    Article  Google Scholar 

  6. Xu, D.; Cote, J.C.: Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3′ end 16 S rDNA and 5′ end 16S-23 S ITS nucleotide sequences. Int. J. Syst. Evol. Microbiol. 53, 695–704 (2003)

    Article  Google Scholar 

  7. Niu, D.D.; Liu, H.X.; Jiang, C.H.; Wang, Y.P.; Wang, Q.Y.; Jin, H.L.; Guo, J.H.: The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol. Plant Microbe Interact. 24, 533–542 (2011)

    Article  Google Scholar 

  8. McSpadden Gardener, B.E.: Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 9411, 1252–1258 (2004)

    Article  Google Scholar 

  9. Kumar, A.; Prakash, A.; Johri, B.N.: Bacteria in agrobiology: crop ecosystems. In: Maheshwari, D.K. (ed.) Bacillus as PGPR in Crop Ecosystem, pp. 37–59. Springer, Berlin (2011)

    Google Scholar 

  10. Stein, T.: Bacillus subtilis antibiotics: structures, synthesis and specifics functions. Mol. Microbiol. 56, 845–847 (2005)

    Article  Google Scholar 

  11. Senthilkumar, M.; Swarnlakshmi, K.; Govindasamy, V.; Lee, Y.K.; Annapurna, K.: Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus Rhizoctonia bataticola. Curr. Microbiol. 58, 288–293 (2009)

    Article  Google Scholar 

  12. Tilak, B.R.; Reddy, B.S.: Bacillus cereus and B. circulans—novel inoculants for crops. Curr. Sci. 90(5), 642–644 (2006)

    Google Scholar 

  13. Handelsman, J.; Raffel, S.; Mester, E.H.; Wunderlich, L.; Grau, C.R.: Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl. Environ. Microbiol. 56, 713–718 (1990)

    Article  Google Scholar 

  14. Sambrook, J.; Russell, D.W. (eds.): Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (2001)

    Google Scholar 

  15. Berg, G.; Krechel, A.; Ditz, M.; Sikora, R.A.; Ulrich, A.; Hallmann, J.: Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51, 215–229 (2005)

    Article  Google Scholar 

  16. Cappuccino, J.G.; Sherman, N. (eds.): Biochemical Activities of Microorganisms. Microbiology, a Laboratory Manual, pp. 105–300, 1st edn. The Benjamin/Cummings Publishing Co, California (1992)

  17. Gordon, S.A.; Weber, R.P.: Colorimetric estimation of indole acetic acid. Plant Physiol. 26, 192–195 (1951)

    Article  Google Scholar 

  18. Schwyn, B.; Neilands, J.B.: Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56 (1987)

    Article  Google Scholar 

  19. Alexander, D.B.; Zuberer, D.A.: Use of Chrome Azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39–45 (1991)

    Article  Google Scholar 

  20. Payne, S.M.: Iron acquisition in microbial pathogenesis. Trends Microbiol. 1, 66–69 (1993)

    Article  Google Scholar 

  21. Jensen, H.L.: Nitrogen fixation in leguminous plants II. Is symbiotic nitrogen fixation influenced by Azotobacter? Proc. Linn. Soc. N.S.W. 57, 205–212 (1942)

    Google Scholar 

  22. Zucconi, F.; Pera, A.; Forte, M.; de Bertoldi, M.: Evaluating toxicity of immature compost. BioCycle 22, 54–57 (1981)

    Google Scholar 

  23. Medawar, G.; Srour, G.; El Azzi, D.: Comparison of chlorophyll content in greenhouse tomato and cucumber leaves after HBED-Fe and EDDHA-Fe applications. Front. Life. Sci. 9, 182–189 (2016)

    Article  Google Scholar 

  24. Arnon, I.: Copper enzymes in isolated chloroplasts in Beta vulgaris. Plant Physiol. 24, 1–15 (1949)

    Article  Google Scholar 

  25. Cao, Y.; Pi, H.; Chandrangsu, P.; Li, Y.; Wang, Y.; Zhou, H.; Xiong, H.; Helmann, J.D.; Cai, Y.: Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 8, 4360 (2018)

    Article  Google Scholar 

  26. Costacurta, A.; Vanderleyden, J.: Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21, 1–18 (1995)

    Article  Google Scholar 

  27. Kamnev, A.; Shchelochkov, A.; Perfiliev, Y.D.; Tarantilis, P.A.; Polissiou, M.G.: Spectroscopic investigation of indole-3-acetic acid interaction with iron (III). J. Mol. Struct. 563, 565–572 (2001)

    Article  Google Scholar 

  28. Ribeiro, V.P.; Marriel, I.E.; de Sousa, S.M.; de Paula Lana, U.G.; Mattos, B.B.; de Oliveira, C.A.; Gomes, E.A.: Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz. J. Microbiol. 49, 40–46 (2018)

    Article  Google Scholar 

  29. Verma, J.P.; Jaiswal, D.K.; Krishna, R.; Prakash, S.; Yadav, J.; Singh, V.: Characterization and screening of thermophilic Bacillus strains for developing plant growth promoting consortium from hot spring of Leh and Ladakh Region of India. Front. Microbiol. 9, 1293 (2018)

    Article  Google Scholar 

  30. Sridevi, M.; Mallaiah, K.V.: Bioproduction of indole acetic acid by Rhizobium strains isolated from root nodules of green manure crop, Sesbania sesban (L.). Merr. Iran. J. Biotechnol. 5, 178–182 (2007)

    Google Scholar 

  31. Verma, J.P.; Yadav, J.; Tiwari, K.N.; Lavakush,; Singh, V.: The impact of Plant growth promoting rhizobacteria on crop production. Int. J. Agric. Res. 5, 954–983 (2010)

    Article  Google Scholar 

  32. Kuan, K.B.; Othman, R.; Rahim, K.A.; Shamsuddin, Z.H.: Plant growth-promoting Rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 11, 1–19 (2016)

    Google Scholar 

  33. Mahamuni, S.V.; Wani, P.V.; Patil, A.S.: Isolation of phosphate solubilizing fungi from rhizosphere of sugarcane & sugar beet using TCP & RP solubilization. Asian J. Biomed. Pharm. Sci. 2, 237–244 (2012)

    Google Scholar 

  34. Kim, Y.H.; Bae, B.; Choung, Y.K.: Optimization of biological phosphorus removal from contaminated sediments with phosphate solubilizing microorganisms. J. Biosci. Bioeng. 1, 23–29 (2005)

    Article  Google Scholar 

  35. Nenwani, V.; Doshi, P.; Saha, T.; Rajkumar, S.: Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J. Yeast Fungal Res. 1, 9–14 (2010)

    Google Scholar 

  36. Banerjee, S.; Palit, R.; Sengupta, Ch; Standing, D.: Stress induces phosphate solubilisation by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust. J. Crop Sci. 4, 378–383 (2010)

    Google Scholar 

  37. Louden, B.C.; Haarmann, D.; Lynne, A.: Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12, 51–53 (2011)

    Article  Google Scholar 

  38. Rahi, P.; Vyas, P.; Sharma, S.; Gulati, A.: Plant growth promoting potential of the fungus Discosia sp. FIHB 571 from tea rhizosphere tested on chickpea, maize and pea. Indian J Microbiol. 49(2), 128–133 (2009)

    Article  Google Scholar 

  39. Lin, T.X.; Xu, C.H.; Tang, M.; Guan, Q.L.; Gong, M.F.: Siderophore producing by endophytic bacterial strain YBS106 with antifungal activity against Fusarium oxysporum. J. Pure Appl. Microbiol. 7, 2091–2096 (2013)

    Google Scholar 

  40. Yu, X.; Ai, C.; Xin, L.; Zhou, G.: The siderophore producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47, 138–145 (2011)

    Article  Google Scholar 

  41. Passari, A.K.; Upadhyaya, K.; Singh, G.; Abdel-Azeem, A.M.; Thankappan, S.; Uthandi,; et al.: Enhancement of disease resistance, growth potential, and photosynthesis in tomato (Solanum lycopersicum) by inoculation with an endophytic actinobacterium, Streptomyces thermocarboxydus strain BPSAC147. PLoS ONE 14(7), e0219014 (2019)

    Article  Google Scholar 

  42. Koh, R.-H.; Song, H.-G.: Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J. Microbiol. Biotechnol. 17(11), 1805–1810 (2007)

    Google Scholar 

  43. Hassen, A.I.; Labuschagne, N.: Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses. World J. Microbiol. Biotechnol. 26, 1837–1846 (2010)

    Article  Google Scholar 

  44. Babu, A.N.; Jogaiah, S.; Ito, S.-I.; Nagaraj, A.K.; Tran, L.-S.P.: Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci. 231, 62–73 (2015)

    Article  Google Scholar 

  45. Dias, M.P.; Bastos, M.S.; Xavier, V.B.; Cassel, E.; Astarita, L.V.; Santarém, E.R.: Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol. Biochem. 118, 479–493 (2017)

    Article  Google Scholar 

  46. Deivanai, S.; Bindusara, A.S.; Prabhakaran, G.; Bhore, S.J.: Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice. J. Nat. Sci. Biol. Med. 5(2), 437–444 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge UTU management for their constant support and providing necessary facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramar Krishnamurthy.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, R., Amaresan, N., Patel, P. et al. Isolation and Characterization of Bacillus spp. Endowed with Multifarious Plant Growth-Promoting Traits and Their Potential Effect on Tomato (Lycopersicon esculentum) Seedlings. Arab J Sci Eng 45, 4579–4587 (2020). https://doi.org/10.1007/s13369-020-04543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04543-1

Keywords

Navigation