Skip to main content
Log in

Analysis of Virgin Asphalt Brands via the Integrated Application of FTIR and Gel Permeation Chromatography

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Counterfeit asphalts have often been deliberately adulterated to reduce costs, which has seriously impeded the development of road and highway construction. In this study, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and gel permeation chromatography (GPC) were applied in combination to explore a fast, accurate, low-cost and efficient method to better identify the brand and quality of asphalt. Results revealed that ATR-FTIR spectra of seven brands of asphalt were basically identical, while they differ in benzene ring substituent content and (–CH2–)n (n ≥ 4) content. The fingerprint intervals of virgin asphalt were 1770–1636 cm−1, 1060–985 cm−1 and 920–690 cm−1. The aging degree of the same brand of asphalt was identified by 1770–1636 cm−1 and 1060–985 cm−1, while 920–690 cm−1 range was used to identify the fingerprint interval of the original asphalt brand. GPC analysis revealed that the large molecular size (LMS) content of original Fu Lian and Shuang Long asphalt brands greatly differed which were not identified by FTIR. Owing to the thermal oxidation, the LMS content of the same brand of virgin asphalt increased by 4–6% after short-term aging. The present study based on the integrated operation of GPC–FTIR for the fast and accurate recognition and distinguishing between different brands of asphalts could be of potential practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Airey, G.: Styrene butadiene styrene polymer modification of road bitumens. J. Mater. Sci. 39(3), 951–959 (2004)

    Article  Google Scholar 

  2. Guo, D.; Sha, A.; Li, H.; Zhou, W.: Research on asphalt pavement quality control parameter criteria system. J. Highway Transp. Res. Dev. 2(2), 39–42 (2007)

    Google Scholar 

  3. Duan, S.; Muhammad, Y.; Li, J.; Maria, S.; Meng, F.; Wei, Y.; Su, Z.; Yang, H.: Enhancing effect of microalgae biodiesel incorporation on the performance of crumb Rubber/SBS modified asphalt. J. Clean. Prod. 237, 117725 (2019)

    Article  Google Scholar 

  4. Ren, R.; Han, K.; Zhao, P.; Shi, J.; Zhao, L.; Gao, D.; Zhang, Z.; Yang, Z.: Identification of asphalt fingerprints based on ATR-FTIR spectroscopy and principal component-linear discriminant analysis. Constr. Build. Mater. 198, 662–668 (2019)

    Article  Google Scholar 

  5. Kaliba, C.; Muya, M.; Sichombo, B.: The need to reduce costs, schedule overruns and quality shortfalls in construction. In: Proceedings of the 4th Built Environment Conference, pp. 17–19 (2009)

  6. Zhang, F.; Xiong, J.; Yaseen, M.; Gan, L.; Chen, Q.; Yin, Y.; Yang, J.; Li, J.: Studies on the variation in performance of different types of asphalts produced from the same oil source. Arab. J. Sci. Eng. 44, 4855–4462 (2018)

    Article  Google Scholar 

  7. Bowers, B.F.; Huang, B.; Shu, X.; Miller, B.C.: Investigation of reclaimed asphalt pavement blending efficiency through GPC and FTIR. Constr. Build. Mater. 50(15), 517–523 (2014)

    Article  Google Scholar 

  8. Cai, X.; Zhang, J.; Xu, G.; Gong, M.; Chen, X.; Yang, J.: Internal aging indexes to characterize the aging behavior of two bio-rejuvenated asphalts. J. Clean. Prod. 220, 1231–1238 (2019)

    Article  Google Scholar 

  9. Gasthauer, E.; Mazé, M.; Marchand, J.P.; Amouroux, J.: Characterization of asphalt fume composition by GC/MS and effect of temperature. Fuel 87(7), 1428–1434 (2008)

    Article  Google Scholar 

  10. Menapace, I.; D'Eurydice, M.N.; Galvosas, P.; Hunter, M.W.; Sirin, O.; Masad, E.: Aging evaluation of asphalt samples with low field nuclear magnetic resonance. Mater. Charact. 128, 165–175 (2017)

    Article  Google Scholar 

  11. Masad, E.; Somadevan, N.: Microstructural finite-element analysis of influence of localized strain distribution on asphalt mix properties. J. Eng. Mech. 128(10), 1105–1114 (2002)

    Article  Google Scholar 

  12. Wei, E.H.; Hopper, D.J.; Goodacre, R.; Beckmann, M.; Draper, J.: Rapid characterization of microbial biodegradation pathways by FT-IR spectroscopy. J. Microbiol. Methods 67(2), 273–280 (2006)

    Article  Google Scholar 

  13. Yang, Z.; Zhang, X.; Yu, J.; Xu, W.: Effects of aging on the multiscale properties of SBS-modified asphalt. Arab. J. Sci. Eng. 44(5), 1–10 (2018)

    Google Scholar 

  14. Yin, Y.; Muhammad, Y.; Zeng, X.; Yang, J.; Li, J.; Yang, S.; Zhao, Z.; Subhan, S.: Synthesis and properties of octadecylamine-graphene oxide modified highly hydrophobic waterborne polyurethane emulsion. Prog. Org. Coat. 125, 234–241 (2018)

    Article  Google Scholar 

  15. Liu, K.; Tong, Z.; Muhammad, Y.; Huang, G.; Zhang, H.; Wang, Z.; Zhu, Y.; Tang, R.: Synthesis of sodium dodecyl sulfate modified BiOBr/magnetic bentonite photocatalyst with three-dimensional parterre like structure for the enhanced photodegradation of tetracycline and ciprofloxacin. Chem. Eng. J. 388, 124374 (2020)

    Article  Google Scholar 

  16. Li, J.; Han, M.; Muhammad, Y.; Liu, Y.; Su, Z.; Yang, J.; Yang, S.; Duan, S.: Preparation and properties of SBS-g-GOs-modified asphalt based on a thiol-ene click reaction in a bituminous environment. Polymers 10(11), 1264 (2018)

    Article  Google Scholar 

  17. Han, M.; Li, J.; Muhammad, Y.; Yin, Y.; Yang, J.; Yang, S.; Duan, S.: Studies on the secondary modification of SBS modified asphalt by the application of octadecyl amine grafted graphene nanoplatelets as modifier. Diam. Relat. Mater. 89, 140–150 (2018)

    Article  Google Scholar 

  18. Muhammad, Y.; Rashid, H.U.; Subhan, S.; Rahman, A.U.; Sahibzada, M.; Tong, Z.: Boosting the hydrodesulfurization of dibenzothiophene efficiency of Mn decorated (Co/Ni)-Mo/Al2O3 catalysts at mild temperature and pressure by coupling with phosphonium based ionic liquids. Chem. Eng. J. 375, 121957 (2019)

    Article  Google Scholar 

  19. Li, Z.; Zhuo, R.; Zhao, Y.; Cao, Q.; Qin, W.: Discriminating wavenumbers selection of ATR-FTIR spectra for identifying graded asphalt. Constr. Build. Mater. 214, 565–573 (2019)

    Article  Google Scholar 

  20. Wu, S.; Zhao, Z.; Xiao, Y.; Yi, M.; Chen, Z.; Li, M.J.C.; Materials, B.: Evaluation of mechanical properties and aging index of 10-year field aged asphalt materials. Constr. Build. Mater. 155, 1158–1167 (2017)

    Article  Google Scholar 

  21. Jie, J.; Hui, Y.; Xu, Y.; Ying, X.; Zhi, S.; You, Z.: Performance analysis of direct coal liquefaction residue (DCLR) and Trinidad lake asphalt (TLA) for the purpose of modifying traditional asphalt. Arab. J. Forence Eng. 41(10), 3983–3993 (2016)

    Article  Google Scholar 

  22. Leng, Z.; Yu, H.; Zhang, Z.; Tan, Z.: Optimizing the mixing procedure of warm asphalt rubber with wax-based additives through mechanism investigation and performance characterization. Constr. Build. Mater. 144, 291–299 (2017)

    Article  Google Scholar 

  23. Ismail, A.S.; Mady, A.H.; Tawfik, S.M.: Synthesis, characterization and biological activity of iron(III) oxide and titanium(IV) oxide nanoparticle dispersed polyester resin nanocomposites. Arab. J. Sci. Eng. 45, 197–203 (2019)

    Article  Google Scholar 

  24. Jeong, S.H.; Xiao, F.; Kim, Y.S.; Kim, K.W.: Evaluation of age retardation effect of antioxidants in dense-graded asphalt (DGA) mixture using large molecular size. Constr. Build. Mater. 149, 459–466 (2017)

    Article  Google Scholar 

  25. Sreeram, A.; Leng, Z.; Zhang, Y.; Padhan, R.K.: Evaluation of RAP binder mobilisation and blending efficiency in bituminous mixtures: an approach using ATR-FTIR and artificial aggregate. Constr. Build. Mater. 179, 245–253 (2018)

    Article  Google Scholar 

  26. Tiemeyer, C.; Lange, A.; Plank, J.: Determination of the adsorbed layer thickness of functional anionic polymers utilizing chemically modified polystyrene nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 456, 139–145 (2014)

    Article  Google Scholar 

  27. Hou, X.; Lv, S.; Chen, Z.; Xiao, F.: Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement 121, 304–316 (2018)

    Article  Google Scholar 

  28. Makowska, M.; Hartikainen, A.; Pellinen, T.: The oxidation of bitumen witnessed in-situ by infrared spectroscopy. Mater. Struct. 50(3), 189 (2017)

    Article  Google Scholar 

  29. Gómez-Carracedo, M.P.; Fernández-Varela, R.; Ballabio, D.; Andrade, J.M.: Screening oil spills by mid-IR spectroscopy and supervised pattern recognition techniques. Chemom. Intell. Lab. Syst. 114(7), 132–142 (2012)

    Article  Google Scholar 

  30. Lee, S.-J.; Amirkhanian, S.N.; Shatanawi, K.; Kim, K.W.: Short-term aging characterization of asphalt binders using gel permeation chromatography and selected Superpave binder tests. Constr. Build. Mater. 22(11), 2220–2227 (2008)

    Article  Google Scholar 

  31. Araujo, M.F.A.S.; Lins, V.D.F.C.; Pasa, V.M.D.; Fonseca, C.G.: Infrared spectroscopy study of photodegradation of polymer modified asphalt binder. J. Appl. Polym. Sci. 125(4), 3275–3281 (2012)

    Article  Google Scholar 

  32. Li, W.; Cai, G.; Zhang, P.: A simple and rapid Fourier transform infrared method for the determination of the degree of acetyl substitution of cellulose nanocrystals. J. Mater. Sci. 54, 8047–8056 (2019)

    Article  Google Scholar 

  33. O’Boyle, N.M.; Sayle, R.A.: Comparing structural fingerprints using a literature-based similarity benchmark. J. Cheminform. 8(1), 36 (2016)

    Article  Google Scholar 

  34. Petersen, J.C.: A review of the fundamentals of asphalt oxidation: chemical, physicochemical, physical property, and durability relationships. Transportation Research Circular (E-C140) (2009)

  35. Kumar, T.A.; Sandeep, I.J.S.; Nivitha, M.R.; Chowdary, V.; Krishnan, J.M.: Quantification of aging compounds in Evotherm-modified warm-mix asphalt binder using Fourier transform infrared spectroscopy. Arab. J. Sci. Eng. 44(10), 8429–8437 (2019)

    Article  Google Scholar 

  36. Apeagyei, A.K.: Laboratory evaluation of antioxidants for asphalt binders. Constr. Build. Mater. 25(1), 47–53 (2011)

    Article  Google Scholar 

  37. Zhang, F.; Muhammad, Y.; Liu, Y.; Han, M.; Yin, Y.; Hou, D.; Li, J.J.C.: Measurement of water resistance of asphalt based on surface free energy analysis using stripping work between asphalt-aggregate system. Constr. Build. Mater. 176, 422–431 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51768007) and Guangxi Natural Science Foundation (Grant No. 2017GXNSFB A1981 85).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4984 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Ma, S., Muhammad, Y. et al. Analysis of Virgin Asphalt Brands via the Integrated Application of FTIR and Gel Permeation Chromatography. Arab J Sci Eng 45, 7999–8009 (2020). https://doi.org/10.1007/s13369-020-04539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04539-x

Keywords

Navigation