Skip to main content
Log in

Synthesis of Rice Husk-Derived Magnetic Biochar Through Liquefaction to Adsorb Anionic and Cationic Dyes from Aqueous Solutions

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Rice husk-mediated magnetic biochar (RH-MBC) was manufactured in the present study by liquefaction method. It is applied on the anionic and cationic dyes to investigate their dye adsorption capacity from aqueous solutions. Characterization of the prepared materials has been conducted by the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope, energy-dispersive X-ray, transmission electron microscopy, Brunauer–Emmett–Teller, vibrating sample magnetometer and point of zero charge (PZC) analysis. From the analyses, it is revealed that the manufactured RH-MBC is super-magnetic and more porous with higher surface area compared with its parent materials. After investigating the adsorption data with different adsorption isotherm and kinetic models, the data were best-fitted with Freundlich model and pseudo-second-order model. The present material shows higher adsorption capacity for representative cationic dye CV (80.04 mg/g) rather than the anionic dye EBT (5.09 mg/g). From the FTIR, XRD, PZC and isotherm studies, it is revealed that the dyes adsorption onto the RH-MBC mainly happened due to the presence of the functional groups like C–O, Fe3O4, –OH, C=C and C–O. It is concluded that the novel functionalized RH-MBC is an approach to use the waste material (rice husk) to use for wastewater treatment and highly efficient for cationic dyes adsorption. Additionally, due to its super-magnetic properties, it is easily separable by using external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Guo, W.; Wang, S.; Wang, Y.; Lu, S.; Gao, Y.: Sorptive removal of phenanthrene from aqueous solutions using magnetic and non-magnetic rice husk-derived biochars. R. Soc. Open Sci. 5, 172382 (2018). https://doi.org/10.1098/rsos.172382

    Article  Google Scholar 

  2. Chieng, H.I.; Lim, L.B.L.; Priyantha, N.: Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalin Water Treat 55, 664–677 (2015). https://doi.org/10.1080/19443994.2014.919609

    Article  Google Scholar 

  3. Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A.: Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280, 1–13 (2011). https://doi.org/10.1016/j.desal.2011.07.019

    Article  Google Scholar 

  4. Zhao, Y.; Li, J.; Zhao, L.; Zhang, S.; Huang, Y.; Wu, X.; Wang, X.: Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem. Eng. J. 235, 275–283 (2014). https://doi.org/10.1016/j.cej.2013.09.034

    Article  Google Scholar 

  5. Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Zhang, J.; Liang, S.; Yue, Q.Y.; Li, Q.; Nguyen, T.V.: Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour. Technol. 148, 574–585 (2013). https://doi.org/10.1016/j.biortech.2013.08.124

    Article  Google Scholar 

  6. Chuah, T.G.; Jumasiah, A.; Azni, I.; Katayon, S.; Thomas Choong, S.Y.: Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175, 305–316 (2005). https://doi.org/10.1016/j.desal.2004.10.014

    Article  Google Scholar 

  7. Chen, Y.; Zhu, Y.; Wang, Z.; Li, Y.; Wang, L.; Ding, L.; Gao, X.; Ma, Y.; Guo, Y.: Application studies of activated carbon derived from rice husks produced by chemical–thermal process—a review. Adv. Colloid Interface Sci. 163, 39–52 (2011). https://doi.org/10.1016/j.cis.2011.01.006

    Article  Google Scholar 

  8. Guo, Y.; Zhang, H.; Tao, N.; Liu, Y.; Qi, J.; Wang, Z.; Xu, H.: Adsorption of malachite green and iodine on rice husk-based porous carbon. Mater. Chem. Phys. 82, 107–115 (2003). https://doi.org/10.1016/S0254-0584(03)00191-3

    Article  Google Scholar 

  9. Agrafioti, E.; Kalderis, D.; Diamadopoulos, E.: Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manag. 133, 309–314 (2014). https://doi.org/10.1016/j.jenvman.2013.12.007

    Article  Google Scholar 

  10. Denyes, M.J.; Langlois, V.S.; Rutter, A.; Zeeb, B.A.: The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Sci. Total Environ. 437, 76–82 (2012). https://doi.org/10.1016/j.scitotenv.2012.07.081

    Article  Google Scholar 

  11. Lamichhane, S.; Bal Krishna, K.C.; Sarukkalige, R.: Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere 148, 336–353 (2016). https://doi.org/10.1016/j.chemosphere.2016.01.036

    Article  Google Scholar 

  12. Li, H.; Qu, R.; Li, C.; Guo, W.; Han, X.; He, F.; Ma, Y.; Xing, B.: Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Bioresour. Technol. 163, 193–198 (2014). https://doi.org/10.1016/j.biortech.2014.04.042

    Article  Google Scholar 

  13. Chen, Y.; Yang, H.; Wang, X.; Zhang, S.; Chen, H.: Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresour. Technol. 107, 411–418 (2012). https://doi.org/10.1016/j.biortech.2011.10.074

    Article  Google Scholar 

  14. Shang, J.; Pi, J.; Zong, M.; Wang, Y.; Li, W.; Liao, Q.: Chromium removal using magnetic biochar derived from herb-residue. J. Taiwan Inst. Chem. Eng. 68, 289–294 (2016). https://doi.org/10.1016/j.jtice.2016.09.012

    Article  Google Scholar 

  15. Trakal, L.; Veselská, V.; Šafařík, I.; Vítková, M.; Číhalová, S.; Komárek, M.: Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 203, 318–324 (2016). https://doi.org/10.1016/j.biortech.2015.12.056

    Article  Google Scholar 

  16. Liu, S.; Huang, B.; Chai, L.; Liu, Y.; Zeng, G.; Wang, X.; Zeng, W.; Shang, M.; Deng, J.; Zhou, Z.: Enhancement of As(V) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Adv. 7, 10891–10900 (2017). https://doi.org/10.1039/C6RA27341F

    Article  Google Scholar 

  17. Wang, P.; Wang, X.; Yu, S.; Zou, Y.; Wang, J.; Chen, Z.; Alharbi, N.S.; Alsaedi, A.; Hayat, T.; Chen, Y.; Wang, X.: Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater. Chem. Eng. J. 306, 280–288 (2016). https://doi.org/10.1016/j.cej.2016.07.068

    Article  Google Scholar 

  18. Saucier, C.; Karthickeyan, P.; Ranjithkumar, V.; Lima, E.C.; Dos Reis, G.S.; De Brum, I.A.S.: Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon. Environ. Sci. Pollut. Res. 24, 5918–5932 (2017). https://doi.org/10.1007/s11356-016-8304-7

    Article  Google Scholar 

  19. Liu, Y.; Yuan, X.; Huang, H.; Wang, X.; Wang, H.; Zeng, G.: Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol–water). Fuel Process. Technol. 112, 93–99 (2013). https://doi.org/10.1016/j.fuproc.2013.03.005

    Article  Google Scholar 

  20. Park, J.; Hung, I.; Gan, Z.; Rojas, O.J.; Lim, K.H.; Park, S.: Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresour. Technol. 149, 383–389 (2013). https://doi.org/10.1016/j.biortech.2013.09.085

    Article  Google Scholar 

  21. Gupta, P.L.; Jung, H.; Tiwari, D.; Kong, S.-H.; Lee, S.-M.: Insight into the mechanism of Cd(II) and Pb(II) removal by sustainable magnetic biosorbent precursor to Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 71, 206–213 (2017). https://doi.org/10.1016/j.jtice.2016.12.007

    Article  Google Scholar 

  22. Ali, I.; Peng, C.; Lin, D.; Saroj, D.; Naz, I.; Khan, Z.M.; Sultan, M.; Ali, M.: Encapsulated green magnetic nanoparticles for the removal of toxic Pb2+ and Cd2+ from water: development, characterization and application. J. Environ. Manag. 234, 273–289 (2019). https://doi.org/10.1016/j.jenvman.2018.12.112

    Article  Google Scholar 

  23. Islam, T.; Peng, C.: Synthesis of carbon embedded silica and zeolite from rice husk to remove trace element from aqueous solutions: characterization, optimization and equilibrium studies. Sep. Sci. Technol. (2019). https://doi.org/10.1080/01496395.2019.1658781

    Article  Google Scholar 

  24. Rovani, S.; Censi, M.T.; Pedrotti, S.L.; Lima, É.C.; Cataluña, R.; Fernandes, A.N.: Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal. J. Hazard. Mater. 271, 311–320 (2014). https://doi.org/10.1016/j.jhazmat.2014.02.004

    Article  Google Scholar 

  25. Shi, Q.; Li, A.; Zhu, Z.; Liu, B.: Adsorption of naphthalene onto a high-surface-area carbon from waste ion exchange resin. J. Environ. Sci. 25, 188–194 (2013). https://doi.org/10.1016/S1001-0742(12)60017-5

    Article  Google Scholar 

  26. Saha, P.; Chowdhury, S.; Gupta, S.; Kumar, I.: Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem. Eng. J. 165, 874–882 (2010). https://doi.org/10.1016/j.cej.2010.10.048

    Article  Google Scholar 

  27. Wang, S.; Zhu, Z.H.: Effects of acidic treatment of activated carbons on dye adsorption. Dyes Pigments 75, 306–314 (2007). https://doi.org/10.1016/j.dyepig.2006.06.005

    Article  Google Scholar 

  28. de Luna, M.D.G.; Flores, E.D.; Genuino, D.A.D.; Futalan, C.M.; Wan, M.-W.: Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls—optimization, isotherm and kinetic studies. J. Taiwan Inst. Chem. Eng. 44, 646–653 (2013). https://doi.org/10.1016/j.jtice.2013.01.010

    Article  Google Scholar 

  29. Mane, V.S.; Mall, I.D.; Srivastava, V.C.: Kinetic and equilibrium isotherm studies for the adsorptive removal of brilliant green dye from aqueous solution by rice husk ash. J. Environ. Manag. 84, 390–400 (2007). https://doi.org/10.1016/j.jenvman.2006.06.024

    Article  Google Scholar 

  30. Filho, N.C.; Venancio, E.C.; Barriquello, M.F.; Hechenleitner, A.A.; Pineda, E.A.G.: Methylene blue adsorption onto modified lignin from sugarcane baggasse. Eclét. Quím. 32, 63–70 (2007). https://doi.org/10.1590/S0100-46702007000400009

    Article  Google Scholar 

  31. Khattri, S.; Singh, M.K.: Colour removal from dye wastewater using sugarcane dust as an adsorbent. Adsorpt. Sci. Technol. 17, 269–282 (1999). https://doi.org/10.1177/026361749901700404

    Article  Google Scholar 

  32. Nigam, K.; Mccallum, A.K.; Thrun, S.; Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39, 103–134 (2000). https://doi.org/10.1023/A:1007692713085

    Article  MATH  Google Scholar 

  33. Kavitha, D.; Namasivayam, C.: Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Tech. 98, 14–21 (2007). https://doi.org/10.1016/j.biortech.2005.12.008

    Article  Google Scholar 

  34. Liversidge, R.M.; Lloyd, G.J.; Wase, D.A.J.; Forster, C.F.: Removal of Basic Blue 41 dye from aqueous solution by linseed cake. Process Biochem. 32, 473–477 (1997). https://doi.org/10.1016/S0032-9592(96)00107-0

    Article  Google Scholar 

  35. Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H.: Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination 225, 13–28 (2008). https://doi.org/10.1016/j.desal.2007.07.005

    Article  Google Scholar 

  36. Huang, H.; Yuan, X.; Zeng, G.; Liu, Y.; Li, H.; Yin, J.; Wang, X.: Thermochemical liquefaction of rice husk for bio-oil production with sub- and supercritical ethanol as solvent. J. Anal. Appl. Pyrolysis 102, 60–67 (2013). https://doi.org/10.1016/j.jaap.2013.04.002

    Article  Google Scholar 

  37. Senthilkumaar, S.; Kalaamani, P.; Porkodi, K.; Varadarajan, P.R.; Subburaam, C.V.: Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. Bioresour. Technol. 97, 1618–1625 (2006). https://doi.org/10.1016/j.biortech.2005.08.001

    Article  Google Scholar 

  38. Thue, P.S.; Sophia, A.C.; Lima, E.C.; Wamba, A.G.N.; de Alencar, W.S.; dos Reis, G.S.; Rodembusch, F.S.; Dias, S.L.P.: Synthesis and characterization of a novel organic–inorganic hybrid clay adsorbent for the removal of Acid Red 1 and Acid Green 25 from aqueous solutions. J. Clean. Prod. 171, 30–44 (2018). https://doi.org/10.1016/j.jclepro.2017.09.278

    Article  Google Scholar 

  39. Leite, A.J.B.; Lima, E.C.; dos Reis, G.S.; Thue, P.S.; Saucier, C.; Rodembusch, F.S.; Dias, S.L.P.; Umpierres, C.S.; Dotto, G.L.: Hybrid adsorbents of tannin and APTES (3-aminopropyltriethoxysilane) and their application for the highly efficient removal of acid red 1 dye from aqueous solutions. J. Environ. Chem. Eng. 5, 4307–4318 (2017). https://doi.org/10.1016/j.jece.2017.08.022

    Article  Google Scholar 

  40. Kamaraj, R.; Vasudevan, S.: Evaluation of electrocoagulation process for theremoval of strontium and cesium from aqueoussolution. Chem. Eng. Res. Des. 93, 522–530 (2015). https://doi.org/10.1016/j.cherd.2014.03.021

    Article  Google Scholar 

  41. Kamaraj, R.; Ganesan, P.; Vasudevan, S.: Removal of lead from aqueous solutions by electrocoagulation: isotherm, kinetics and thermodynamic studies. Int. J. Environ. Sci. Technol. 12, 683–692 (2015). https://doi.org/10.1007/s13762-013-0457-z

    Article  Google Scholar 

  42. Vasudevan, S.; Lakshmi, J.; Sozhan, G.: Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water. Environ. Sci. Pollut. Res. 19, 2734–2744 (2012). https://doi.org/10.1007/s11356-012-0773-8

    Article  Google Scholar 

  43. Vasudevan, S.; Lakshmi, J.; Sozhan, G.: Simultaneous removal of Co, Cu, and Cr from water by electrocoagulation. Toxicol. Environ. Chem. 94(10), 1930–1940 (2012). https://doi.org/10.1080/02772248.2012.742898

    Article  Google Scholar 

  44. Igwe, J.C.; Abia, A.A.: A bioseparation process for removing heavy metals from waste water using biosorbents. Afr. J. Biotechnol. 5, 1167–1179 (2006)

    Google Scholar 

  45. Langmuir, I.: the adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918). https://doi.org/10.1021/ja02242a004

    Article  Google Scholar 

  46. Vasudevan, S.; Lakshmi, J.; Packiyam, M.: Electrocoagulation studies on removal of cadmium using magnesium electrode. J. Appl. Electrochem. 40, 2023–2032 (2010). https://doi.org/10.1007/s10800-010-0182-y

    Article  Google Scholar 

  47. Vasudevan, S.; Sozhan, G.; Ravichandran, S.; Jayaraj, J.; Lakshmi, J.; Sheela, S.M.: Studies on the removal of phosphate from drinking water by electrocoagulation process. Ind. Eng. Chem. Res. 47, 2018–2023 (2018). https://doi.org/10.1021/ie0714652

    Article  Google Scholar 

  48. Bedoui, A.; Ahmadi, M.F.; Bensalah, N.; Gadri, A.: Comparative study of Eriochrome black T treatment by BDD-anodic oxidation and Fenton process. Chem. Eng. J. 146, 98–104 (2009). https://doi.org/10.1016/j.cej.2008.05.029

    Article  Google Scholar 

  49. Naushad, M.; Vasudevan, S.; Sharma, G.; Kumar, A.; ALOthman, Z.A.: Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Des. Water Treat. (2015). https://doi.org/10.1080/19443994.2015.1090914

    Article  Google Scholar 

  50. Vasudevan, S.; Lakshmi, J.; Sozhan, G.: Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water. J. Hazard. Mater. 192, 26–34 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.081

    Article  Google Scholar 

  51. Kasperiski, F.M.; Lima, E.C.; dos Reis, G.S.; da Costa, J.B.; Dotto, G.L.; Dias, S.L.P.; Cunha, M.R.; Pavan, F.A.; Correa, C.S.: Preparation of CTAB-functionalized aqai stalk and its efficient application as adsorbent for the removal of Direct Blue 15 and Direct Red 23 dyes from aqueous media. Chem. Eng. Commun. 205(10), 1520–1536 (2018). https://doi.org/10.1080/00986445.2018.1458028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changsheng Peng, Imran Ali or Muhammad Sultan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, T., Peng, C., Ali, I. et al. Synthesis of Rice Husk-Derived Magnetic Biochar Through Liquefaction to Adsorb Anionic and Cationic Dyes from Aqueous Solutions. Arab J Sci Eng 46, 233–246 (2021). https://doi.org/10.1007/s13369-020-04537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04537-z

Keywords

Navigation