Skip to main content
Log in

Identifying the Parameters of Cole Impedance Model Using Magnitude Only and Complex Impedance Measurements: A Metaheuristic Optimization Approach

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the good correlation between the physiological and pathological conditions of fruits and vegetables and their equivalent Cole impedance model parameters, an accurate and reliable technique for their identification is sought by many researchers since the introduction of the model in early 1940s. The nonlinear least squares (NLS) and its variants are examples of the conventional optimization techniques that are commonly used in literature to tackle this problem based on complex-valued impedance measurement data. However, as happens in most conventional techniques, the NLS and its variants are subject to falling local optimal solutions and prone to getting distracted by outliers. This motivated the authors to use six meta-heuristic optimization techniques to estimate the Cole impedance models’ parameters on the basis of either complex impedance or magnitude-only impedance experimental measurements. Most of the meta-heuristic optimization algorithms under investigation are entirely new to this application. These algorithms include the: salp optimization algorithm (SSA), moth-flame optimizer (MFO), whale optimization algorithm (WOA), grey wolf optimizer (GWO), cuckoo search optimizer (CS) and flower pollination algorithm (FPA). The comparison with the NLS algorithm and most of the bio-inspired algorithms under investigation show greater consistency and accuracy with regard to the estimated parameters. A box plot statistical analysis is carried out to prove the effectiveness of the investigated bio-inspired algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers, vol. 84. Springer, Berlin (2011)

    MATH  Google Scholar 

  2. Fernandez, A.; özarslan, M.A.; Baleanu, D.: On fractional calculus with general analytic kernels. Appl. Math. Comput. 354, 248–265 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Podlubny, I.: Fractional-order systems and pi/sup /spl lambda//d/sup /spl mu//-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    MATH  Google Scholar 

  4. Goyal, V.; Mishra, P.; Deolia, V.K.: A robust fractional order parallel control structure for flow control using a pneumatic control valve with nonlinear and uncertain dynamics. Arab. J. Sci. Eng. 44(3), 2597–2611 (2019)

    Google Scholar 

  5. Tolba, M.F.; AboAlNaga, B.M.; Said, L.A.; Madian, A.H.; Radwan, A.G.: Fractional order integrator/differentiator: FPGA implementation and FOPID controller application. AEU Int. J. Electron. Commun. 98, 220–229 (2019). https://doi.org/10.1016/j.aeue.2018.10.007

    Article  Google Scholar 

  6. Kerrouche, K.D.E.; Wang, L.; Mezouar, A.; Boumediene, L.; Van Den Bossche, A.: Fractional-order sliding mode control for d-statcom connected wind farm based dfig under voltage unbalanced. Arab. J. Sci. Eng. 44(3), 2265–2280 (2019)

    Google Scholar 

  7. Tolba, M.F.; Said, L.A.; Madian, A.H.; Radwan, A.G.: Fpga implementation of the fractional order integrator/differentiator: two approaches and applications. IEEE Trans. Circuits Syst. I Regular Papers 66(4), 1484–1495 (2019). https://doi.org/10.1109/TCSI.2018.2885013

    Article  MathSciNet  Google Scholar 

  8. Li, H.-L.; Cao, J.; Jiang, H.; Alsaedi, A.: Graph theory-based finite-time synchronization of fractional-order complex dynamical networks. J. Franklin Inst. 355(13), 5771–5789 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Ismail, S.M.; Said, L.A.; Rezk, A.A.; Radwan, A.G.; Madian, A.H.; Abu-Elyazeed, M.F.; Soliman, A.M.: Generalized fractional logistic map encryption system based on FPGA. AEU Int. J. Electron. Commun. 80, 114–126 (2017)

    Google Scholar 

  10. Soliman, N.S.; Tolba, M.F.; Said, L.A.; Madian, A.H.; Radwan, A.G.: Fractional x-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software. Chaos Solitons Fractals 126, 292–307 (2019)

    MathSciNet  Google Scholar 

  11. AbdelAty, A.M.; Radwan, A.G.; Elwakil, A.S.; Psychalinos, C.: Transient and steady-state response of a fractional-order dynamic PV model under different loads. J. Circuits Syst. Comput. 27(02), 1850023 (2018)

    Google Scholar 

  12. Hamed, E.M.; AbdelAty, A.M.; Said, L.A.; Radwan, A.G.: Effect of different approximation techniques on fractional-order KHN filter design. Syst. Signal Process. Circuits 37, 5222–5252 (2018)

    Google Scholar 

  13. Goyal, D.; Varshney, P.: Analog realization of electronically tunable fractional-order differ-integrators. Arab. J. Sci. Eng. 44(3), 1933–1948 (2019)

    Google Scholar 

  14. Khalil, N.A.; Said, L.A.; Radwan, A.G.; Soliman, A.M.: Generalized two-port network based fractional order filters. AEU Int. J. Electron. Commun. 104, 128–146 (2019)

    Google Scholar 

  15. Elwy, O.; Rashad, S.H.; Said, L.A.; Radwan, A.G.: Comparison between three approximation methods on oscillator circuits. Microelectron. J. 81, 162–178 (2018)

    Google Scholar 

  16. Said, L.A.; Radwan, A.G.; Madian, A.H.; Soliman, A.M.: Fractional order oscillators based on operational transresistance amplifiers. AEU Int. J. Electron. Commun. 69(7), 988–1003 (2015)

    Google Scholar 

  17. Said, L.A.; Radwan, A.G.; Madian, A.H.; Soliman, A.M.: Generalized family of fractional-order oscillators based on single CFOA and RC network. In: 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE (2017)

  18. Yousri, D.; AbdelAty, A.M.; Said, L.A.; AboBakr, A.; Radwan, A.G.: Biological inspired optimization algorithms for cole-impedance parameters identification. AEU Int. J. Electron. Commun. 78, 79–89 (2017)

    Google Scholar 

  19. Yousri, D.; AbdelAty, A.M.; Said, L.A.; Radwan, A.G.: Chapter 5-Biologically inspired optimization algorithms for fractional-order bioimpedance models parameters extraction. In: Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Fractional Order Systems, pp. 125–162. Advances in Nonlinear Dynamics and Chaos (ANDC)Academic Press, Cambridge (2018)

    Google Scholar 

  20. AboBakr, A.; Said, L.A.; Madian, A.H.; Elwakil, A.S.; Radwan, A.G.: Experimental comparison of integer/fractional-order electrical models of plant. AEU Int. J. Electron. Commun. 80, 1–9 (2017)

    Google Scholar 

  21. Freeborn, T.J.; Maundy, B.; Elwakil, A.S.: Cole impedance extractions from the step-response of a current excited fruit sample. Comput. Electron. Agric. 98, 100–108 (2013)

    Google Scholar 

  22. Vastarouchas, C.; Psychalinos, C.; Elwakil, A.; Al-Ali, A.: Novel two-measurements-only cole-cole bio-impedance parameters extraction technique. Measurement 131, 394–399 (2019)

    Google Scholar 

  23. Al-Ali, A.A.; Elwakil, A.S.; Maundy, B.J.; Freeborn, T.J.: Extraction of phase information from magnitude-only bio-impedance measurements using a modified Kramers–Kronig transform. Circuits Syst. Signal Process. 37(8), 3635–3650 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Freeborn, T.J.; Maundy, B.; Elwakil, A.S.: Extracting the parameters of the double-dispersion cole bioimpedance model from magnitude response measurements. Med. Biol. Eng. Comput. 52(9), 749–758 (2014)

    Google Scholar 

  25. Maundy, B.J.; Elwakil, A.S.; Allagui, A.: Extracting the parameters of the single-dispersion cole bioimpedance model using a magnitude-only method. Comput. Electron. Agric. 119, 153–157 (2015)

    Google Scholar 

  26. Ayllon, D.; Seoane, F.; Gil-Pita, R.: Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements-a comparative study. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 3779–3782. IEEE (2009)

  27. Khor, C.S.; Elkamel, A.; Shah, N.: Optimization methods for petroleum fields development and production systems: a review. Optim. Eng. 18(4), 907–941 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Kvasov, D.E.; Mukhametzhanov, M.S.: Metaheuristic vs. deterministic global optimization algorithms: the univariate case. In: Applied Mathematics and Computation 318, Recent Trends in Numerical Computations: Theory and Algorithms, pp. 245–259. (2018)

  29. Carvalho, É.C.R.; Bernardino, H.S.; Hallak, P.H.; Lemonge, A.C.C.: An adaptive penalty scheme to solve constrained structural optimization problems by a craziness based particle swarm optimization. Optim. Eng. 18(3), 693–722 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Yousri, D.; AbdelAty, A.M.; Said, L.A.; Elwakil, A.; Maundy, B.; Radwan, A.G.: Chaotic flower pollination and grey wolf algorithms for parameter extraction of bio-impedance models. Appl. Soft Comput. 75, 750–774 (2019)

    Google Scholar 

  31. Wolpert, D.H.; Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1(1), 67–82 (1997)

    Google Scholar 

  32. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Google Scholar 

  33. Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Google Scholar 

  34. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Google Scholar 

  35. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  36. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

    Google Scholar 

  37. Xin-She, Y.: Nature-Inspired Optimization Algorithms. Elsevier, Amsterdam (2014)

    MATH  Google Scholar 

  38. Allam, D.; Yousri, D.; Eteiba, M.: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm. Energy Convers. Manag. 123, 535–548 (2016)

    Google Scholar 

  39. Salgotra, R.; Singh, U.: A novel bat flower pollination algorithm for synthesis of linear antenna arrays. Neural Comput. Appl. 30(7), 2269–2282 (2018)

    Google Scholar 

  40. Sarangi, S.K.; Panda, R.; Das, P.K.; Abraham, A.: Design of optimal high pass and band stop fir filters using adaptive cuckoo search algorithm. Eng. Appl. Artif. Intell. 70, 67–80 (2018)

    Google Scholar 

  41. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. North-Holland Mathematics StudiesElsevier, Amsterdam (2006)

    MATH  Google Scholar 

  42. Freeborn, T.J.: A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 416–424 (2013)

    Google Scholar 

  43. Cole, K.S.: Permeability and impermeability of cell membranes for ions. Cold Spring Harbor Symp. Quant. Biol. 8, 110–122 (1940)

    Google Scholar 

  44. Gholami-Boroujeny, S.; Bolic, M.: Extraction of Cole parameters from the electrical bioimpedance spectrum using stochastic optimization algorithms. Med. Biol. Eng. Comput. 54(4), 643–651 (2016)

    Google Scholar 

  45. Aboalnaga, B.M.; Said, L.A.; Madian, A.H.; Elwakil, A.S.; Radwan, A.G.: Cole bio-impedance model variations in \(daucus~carota~sativus\) under heating and freezing conditions. IEEE Access 7, 113254–113263 (2019)

    Google Scholar 

  46. Mousa, M.A.; AboBakr, A.; Said, L.A.; Madian, A.H.; Elwakil, A.S.; Radwan, A.G.: Heating and freezing injury to plant tissues and their effect on bioimpedance: experimental study. In: 4th International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), 2019, pp. 1–4 (2019)

  47. Zhao, H.; Xiao, X.; Sun, Q.: Identifying electric shock in the human body via \(\alpha \) dispersion. IEEE Trans. Power Deliv. 33(3), 1107–1114 (2018)

    Google Scholar 

  48. Watanabe, T.; Ando, Y.; Orikasa, T.; Kasai, S.; Shiina, T.: Electrical impedance estimation for apple fruit tissues during storage using cole-cole plots. J. Food Eng. 221, 29–34 (2018)

    Google Scholar 

  49. Taji, B.; Chan, A.D.C.; Shirmohammadi, S.: Effect of pressure on skin-electrode impedance in wearable biomedical measurement devices. IEEE Trans. Instrum. Meas. 67(8), 1900–1912 (2018)

    Google Scholar 

  50. Watanabe, T.; Nakamura, N.; Ando, Y.; Kaneta, T.; Kitazawa, H.; Shiina, T.: Application and simplification of cell-based equivalent circuit model analysis of electrical impedance for assessment of drop shock bruising in japanese pear tissues. Food Bioprocess Technol. 11(11), 2125–2129 (2018)

    Google Scholar 

  51. Kapur, K.; Taylor, R.S.; Qi, K.; Nagy, J.A.; Li, J.; Sanchez, B.; Rutkove, S.B.: Predicting myofiber size with electrical impedance myography: a study in immature mice. Muscle Nerve 58(1), 106–113 (2018)

    Google Scholar 

  52. Yousri, D.A.; AbdelAty, A.M.; Said, L.A.; Elwakil, A.S.; Maundy, B.; Radwan, A.G.: Parameter identification of fractional-order chaotic systems using different meta-heuristic optimization algorithms. Nonlinear Dyn. 95(3), 2491–2542 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors care for giving thanks to Egyptian Academy of Science, Research and Technology (ASRT) for funding JESOR Project \(\#2009\) and NU for easing all processes needed to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobna A. Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbdelAty, A.M., Yousri, D.A., Said, L.A. et al. Identifying the Parameters of Cole Impedance Model Using Magnitude Only and Complex Impedance Measurements: A Metaheuristic Optimization Approach. Arab J Sci Eng 45, 6541–6558 (2020). https://doi.org/10.1007/s13369-020-04532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04532-4

Keywords

Navigation