Skip to main content
Log in

Performance of Functionalized MWCNT–Water Nanofluids for Heat Transfer Applications

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The higher level of performance, compactness and integration of modern electronic components often results in heat dissipation issues. Hence, there is an increasing interest in multiwalled carbon nanotubes (MWCNTs) due to their very attractive thermal properties. In this study, functionalized MWCNT (F-MWCNT) and different types of surfactants—Arabic gum (AG), dodecylbenzenesulphonic acid (DBSA) and Chinese ink (CI)—are incorporated into water-based nanofluids to improve the stability and dispersion behavior of the nanofluids. A two-step approach was used to prepare the nanofluids, and 0.5 vol% of F-MWCNT was used in the nanofluids formulation. Nanofluids prepared using 0.5 vol% of F-MWCNT with DBSA surfactant exhibited the highest thermal conductivity enhancement of 48% compared to other nanofluids. The results are supported by stability tests using visual observation and zeta potential. Notably, the F-MWCNT nanofluids with AG and DBSA exhibited an improvement in stability compared to those MWCNT and F-MWCNT nanofluids without surfactant. On the other hand, the experimental work on the closed-loop electronic cooling system revealed that nanofluids prepared with 0.5 vol% of F-MWCNT without surfactants exhibited better performance than F-MWCNT nanofluids with surfactants. This indicates that 0.5 vol% of F-MWCNT is sufficient for use as a nanofluid for a closed-loop electronic cooling system without the addition of surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Remsburg, R.: Advanced Thermal Design of Electronic Equipment. Springer, Berlin (2011)

    Google Scholar 

  2. Koichi, M.: Thermal technology for cooling electronics. Fujikura Tech. Rev. 42, 70–75 (2013)

    Google Scholar 

  3. Li, Y.; Zhou, J.; Tung, S.; Schneider, E.; Xi, S.: A review on development of nanofluid preparation and characterization. Powder Technol. 196, 89–101 (2009)

    Article  Google Scholar 

  4. Schoenitz, M.; Grundermann, L.; Augustin, W.; Scholl, S.: Fouling in microstructured devices: a review. Chem. Commun. 51(39), 8213–8228 (2015)

    Article  Google Scholar 

  5. Lee, J.; Mudawar, I.: Assessment of the effectiveness of nanofluids for singlephase and two-phase heat transfer in micro-channels. Int. J. Heat Mass Transf. 50(3–4), 452–463 (2007)

    Article  Google Scholar 

  6. Shustov, M.; Kuzma-Kichta, Y.A.; Lavrikov, A.: Nanoparticle coating of a microchannel surface is an effective method for increasing the critical heat flux. Therm. Eng. 64(4), 301–306 (2017)

    Article  Google Scholar 

  7. Kim, S.J.; Bang, I.C.; Buongiorno, J.; Hu, L.W.: Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl. Phys. Lett. 89(15), 1–3 (2006)

    Google Scholar 

  8. Naito, M.; Yokoyama, T.; Hosokawa, K.; Nogi, K.: Nanoparticle Technology Handbook. Elsevier, Amsterdam (2018)

    Google Scholar 

  9. Zargartalebi, M.; Azaiez, J.: Heat transfer analysis of nanofluid based microchannel heat sink. Int. J. Heat Mass Transf. 127, 1233–1242 (2018)

    Article  Google Scholar 

  10. Gurav, P.; Naik, S.S.; Ansari, K.; Srinath, S.; Kishore, K.A.; Setty, Y.P.; Sonawane, S.: Stable colloidal copper nanoparticles for a nanofluid: production and application. Colloids Surf. A Physicochem. Eng. Asp. 441, 589–597 (2014)

    Article  Google Scholar 

  11. Choudhary, R.; Khurana, D.; Kumar, A.; Subudhi, S.: Stability analysis of Al2O3/water nanofluids. J. Exp. Nanosci. 12, 140–151 (2017)

    Article  Google Scholar 

  12. Yang, L.; Du, K.: A comprehensive review on heat transfer characteristics of TiO2 nanofluids. Int. J. Heat Mass Transf. 108, 11–31 (2017)

    Article  Google Scholar 

  13. Gupta, M.; Kumar, R.; Arora, N.; Kumar, S.; Dilbagi, N.: Forced convective heat transfer of MWCNT/water nanofluid under constant heat flux: an experiment investigation. Arab. J. Sci. Eng. 41, 599–609 (2016)

    Article  Google Scholar 

  14. Xie, H.; Lee, H.; Youn, W.; Choi, M.: Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys. 94, 4967–4971 (2003)

    Article  Google Scholar 

  15. Bystrzejewski, M.; Huczko, A.; Lange, H.; Gemming, T.; Büchner, B.; Rümmeli, M.H.: Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions. J. Colloid Interface Sci. 345, 138–142 (2010)

    Article  Google Scholar 

  16. Ghadimi, A.; Saidur, R.; Metselaar, H.S.C.: A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54, 4051–4068 (2011)

    Article  Google Scholar 

  17. Moradi, A.; Toghraie, D.; Isfahani, A.H.M.; Hosseinian, A.: An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media. J. Therm. Anal. Calorim. 137, 1797–1807 (2019)

    Article  Google Scholar 

  18. Madhesh, D.; Kalaiselvam, S.: Preparation and characterization of MWCNT-water nanofluids for heat transfer applications. Int. J. Adv. Mech. Eng. 4, 193–198 (2014)

    Google Scholar 

  19. Rajput, N.; Shukla, D.D.B.; Sharma, S.K.; Rajput, D.: Thermal analysis of MWCNT/distilled water nanofluid on the efficiency of flat plate solar collector. Int. J. Mech. Eng. Technol. 8, 233–240 (2017)

    Google Scholar 

  20. Seong, H.J.; Kim, G.N.; Jeon, J.H.; Jeong, H.M.; Noh, J.P.; Kim, Y.J.; Kim, H.J.; Huh, S.C.: Experimental study on characteristics of grinded graphene nanofluids with surfactants. Materials 11, 1–9 (2018)

    Google Scholar 

  21. Leon, K.Y.; Razali, I.; Ahmad, K.Z.K.; Amer, N.H.; Akmal, H.N.: Thermal conductivity characteristics of titanium dioxide water based nanofluids subjected to various types of surfactant. J. Eng. Sci. Technol. 13, 1677–1689 (2018)

    Google Scholar 

  22. Hung, T.C.; Yan, W.M.; Wang, X.D.; Chang, C.Y.: Heat transfer enhancement in microchannel heat sinks using nanofluids. Int. J. Heat Mass Transf. 55(9), 2559–2570 (2012)

    Article  Google Scholar 

  23. Ilyas, S.U.; Pendyala, R.; Narahari, M.: Stability and thermal analysis of MWCNT-thermal oil-based nanofluids. Colloids Surf. A Physicochem. Eng. Asp. 527, 11–22 (2017)

    Article  Google Scholar 

  24. Iyahraja, S.; Rajadurai, J.S.: Study of thermal conductivity enhancement of aqueous suspensions containing silver nanoparticles. AIP Adv. 5, 057103 (2015)

    Article  Google Scholar 

  25. Kouloulias, K.; Sergis, A.; Hardalupas, Y.: Sedimentation in nanofluids during a natural convection experiment. Int. J. Heat Mass Transf. 101, 1193–1203 (2016)

    Article  Google Scholar 

  26. Sundar, L.S.; Sharma, K.V.; Naik, M.T.; Sing, M.K.: Empirical and theoretical correlations on viscosity of nanofluids—a review. Renew. Sustain. Energy Rev. 25, 670–686 (2013)

    Article  Google Scholar 

  27. Ghadimi, A.; Metselaar, I.H.: The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp. Therm. Fluid Sci. 51, 1–9 (2013)

    Article  Google Scholar 

  28. Suganthi, K.S.; Rajan, K.S.: Metal oxide nanofluids: review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew. Sustain. Energy Rev. 76, 226–255 (2017)

    Article  Google Scholar 

  29. Yu, F.; Chen, Y.; Liang, X.; Xu, J.; Lee, C.; Liang, Q.; Tao, P.; Deng, T.: Dispersion stability of thermal nanofluids. Prog. Nat. Sci. Mater. Int. 27, 531–542 (2017)

    Article  Google Scholar 

  30. Singh, S.; Bharti, A.; Meena, V.K.: Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles. J. Mater. Sci. Mater. Electron. 25, 3747–3752 (2014)

    Article  Google Scholar 

  31. Khaleduzzaman, S.S.; Mahbubul, I.M.; Sohel, M.R.; Saidur, R.; Selvaraj, J.; Ward, T.A.; Niza, M.E.: Experimental analysis of energy and friction factor for titanium dioxide nanofluid in a water block heat sink. Int. J. Heat Mass Transf. 115, 77–85 (2017)

    Article  Google Scholar 

  32. Scott, T.H.; David, G.C.; Sergei, S.; Liping, X.; Rahmi, O.; Paul, B.; Monica, U.; Michael, S.S.; Giles, S.; Moonsub, S.; Pawel, K.: Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2, 731–734 (2003)

    Article  Google Scholar 

  33. Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M.: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Therm Fluid Sci. 38, 54–60 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to the Ministry of Higher Education Malaysia for providing the necessary funding and support for this research under the FRGS research grant (Grant No. 203.PAERO.6071399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussin Mamat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isa, R.M., Satia, M.S.D., Mamat, H. et al. Performance of Functionalized MWCNT–Water Nanofluids for Heat Transfer Applications. Arab J Sci Eng 45, 5603–5614 (2020). https://doi.org/10.1007/s13369-020-04515-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04515-5

Keywords

Navigation