Skip to main content

Advertisement

Log in

VSC Controllers for Multiterminal HVDC Transmission System: A Comparative Study

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Voltage source converter (VSC)-based multiterminal high-voltage direct current (HVDC) systems received widespread attention throughout the world for grid integration of renewable energy resources in recent years. This paper presents a comparative performance analysis of different VSC-based outer control and inner current controllers for the multiterminal HVDC system. It employs either lead-lag (LL) or proportional–integral (PI) controllers for outer DC link voltage control, whereas it uses PI or model predictive controllers (MPCs) for inner current control. Hence, it designs four combinations of controllers (LL–MPC, LL–PI, PI–MPC, and PI–PI) to control the outer DC link voltage and inner current of the VSC-based multiterminal HVDC system. Besides, it proposes an integral time squared-error (ITSE)-based optimization technique to tune the parameters of the employed PI controllers that selects optimal parameters at minimum ITSE under extreme operating condition. The combination of the mentioned controllers forms the main control unit of the multiterminal HVDC transmission network for regulation of the DC link voltage and the power flow. Moreover, this article evaluates the controller performance in terms of maximum overshoot, steady-state error, settling time, rise time, and total harmonic distortion. It implements the proposed controllers in a typical VSC-HVDC system and multiterminal HVDC transmission system in MATLAB/SIMULINK platform. Presented results confirm the efficacy of the four-type controllers. The optimized PI–MPC controller provides overall better performance relative to other controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Hossain, M.I.; Khan, S.A.; Shafiullah, M.: Power maximization of a photovoltaic system using automatic solar panel tracking along with boost converter and charge controller. In: 2012 7th International Conference on Electrical and Computer Engineering, pp. 900–903 (2012)

  2. Khan, S.A.; Hossain, M.I.: Design and implementation of microcontroller based fuzzy logic control for maximum power point tracking of a photovoltaic system. In: International Conference on Electrical & Computer Engineering (ICECE 2010), pp. 322–325 (2010)

  3. Khan, S.A.; Hossain, M.I.: Intelligent control based maximum power extraction strategy for wind energy conversion systems. In: 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 001040–001043 (2011)

  4. Alassi, A.; Bañales, S.; Ellabban, O.; Adam, G.; MacIver, C.: HVDC transmission: technology review, market trends and future outlook. Renew. Sustain. Energy Rev. 112, 530–554 (2019)

    Article  Google Scholar 

  5. Elliott, D.; et al.: A comparison of AC and HVDC options for the connection of offshore wind generation in great britain. IEEE Trans. Power Deliv. 31(2), 798–809 (2016)

    Article  Google Scholar 

  6. Attya, A.B.; Anaya-Lara, O.; Leithead, W.E.: Novel concept of renewables association with synchronous generation for enhancing the provision of ancillary services. Appl. Energy 229, 1035–1047 (2018)

    Article  Google Scholar 

  7. Attya, A.B.; Ademi, S.; Jovanović, M.; Anaya-Lara, O.: Frequency support using doubly fed induction and reluctance wind turbine generators. Int. J. Electr. Power Energy Syst. 101, 403–414 (2018)

    Article  Google Scholar 

  8. Bianchi, F.D.; Domínguez-García, J.L.; Gomis-Bellmunt, O.: Control of multiterminal HVDC networks towards wind power integration: a review. Renew. Sustain. Energy Rev. 55, 1055–1068 (2016)

    Article  Google Scholar 

  9. Karthi, K.; Radhakrishnan, R.; Baskaran, J.M.; Titus, L.S.: Investigations on Performance Analysis of Independent Real and Reactive Power Control of VSC-HVDC Transmission Systems. In: 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–6 (2017)

  10. Bin Karim, C.A.; Zamee, M.A.: Design and analysis of pole-placement controller for dynamic stability improvement of VSC-HVDC based power system. In: 2014 9th International Forum on Strategic Technology (IFOST), pp. 272–275 (2014)

  11. Manoloiu, A.; Pereira, H.A.; Teodorescu, R.; Bongiorno, M.; Eremia, M.; Silva, S.R.: Comparison of PI and PR current controllers applied on two-level VSC-HVDC transmission system. In: 2015 IEEE Eindhoven PowerTech, pp. 1–5

  12. Zafar, S.; Amin, M.A.; Javaid, B.; Khalid, H.A.: On design of DC-link voltage controller and PQ controller for grid connected VSC for microgrid application. In: 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), pp. 1–6 (2018)

  13. Li, L.; Zhang, D.: Model predictive control for wind farm integration through VSC-HVDC. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 254–259 (2018)

  14. Guo, Y.; Gao, H.; Wu, Q.; Zhao, H.; Ostergaard, J.; Shahidehpour, M.: Enhanced voltage control of VSC-HVDC-connected offshore wind farms based on model predictive control. IEEE Trans. Sustain. Energy 9(1), 474–487 (2018)

    Article  Google Scholar 

  15. Zhang, L.; Nee, H.-P.; Harnefors, L.: Analysis of stability limitations of a VSC-HVDC link using power-synchronization control. IEEE Trans. Power Syst. 26(3), 1326–1337 (2011)

    Article  Google Scholar 

  16. Arioua, L.; Marinescu, B.: Multivariable control with grid objectives of an HVDC link embedded in a large-scale AC grid. Int. J. Electr. Power Energy Syst. 72, 99–108 (2015)

    Article  Google Scholar 

  17. Ramadan, H.S.; Siguerdidjane, H.; Petit, M.; Kaczmarek, R.: Performance enhancement and robustness assessment of VSC–HVDC transmission systems controllers under uncertainties. Int. J. Electr. Power Energy Syst. 35(1), 34–46 (2012)

    Article  Google Scholar 

  18. Zeng, L.; et al.: Design and real-time implementation of data-driven adaptive wide-area damping controller for back-to-back VSC-HVDC. Int. J. Electr. Power Energy Syst. 109, 558–574 (2019)

    Article  Google Scholar 

  19. Ndreko, M.; Rueda, J.L.; Popov, M.; van der Meijden, M.A.M.M.: Optimal fault ride through compliance of offshore wind power plants with VSC-HVDC connection by meta-heuristic based tuning. Electr. Power Syst. Res. 145, 99–111 (2017)

    Article  Google Scholar 

  20. Hassani, A.M.; Bektas, S.I.; Hosseini, S.H.: Modular multilevel converter circulating current control using model predictive control combined with genetic algorithm. Procedia Comput. Sci. 120, 780–787 (2017)

    Article  Google Scholar 

  21. Ahmed, M.; Ebrahim, M.A.; Ramadan, H.S.; Becherif, M.: Optimal genetic-sliding mode control of VSC-HVDC transmission systems. Energy Procedia 74, 1048–1060 (2015)

    Article  Google Scholar 

  22. Åström, K.J.; Hägglund, T.: PID Controllers. International Society for Measurement and Control, Research Triangle (1995)

    Google Scholar 

  23. Wang, W.; Beddard, A.; Barnes, M.; Marjanovic, O.: Analysis of active power control for VSC–HVDC. IEEE Trans. Power Deliv. 29(4), 1978–1988 (2014)

    Article  Google Scholar 

  24. Gil-González, W.; Montoya, O.D.; Garces, A.: Direct power control for VSC-HVDC systems: an application of the global tracking passivity-based PI approach. Int. J. Electr. Power Energy Syst. 110, 588–597 (2019)

    Article  Google Scholar 

  25. Wu, A.; Yuan, Z.; Rao, H.; Zhou, B.; Li, H.: Analysis of power transmission limit for the VSC-HVDC feeding weak grid. J. Eng. 2019(16), 2916–2920 (2019)

    Google Scholar 

  26. Renedo, J.; Sigrist, L.; Garcia-Cerrada, A.; Rouco, L.: Modelling of VSC-HVDC multiterminal systems for small-signal angle stability analysis. In: 15th IET international conference on AC and DC power transmission (ACDC 2019), p. 46 (2019)

  27. Li, Y.; Yang, S.; Wang, K.; Zeng, D.: Research on PI controller tuning for VSC-HVDC system. In: 2011 International Conference on Advanced Power System Automation and Protection, pp. 261–264 (2011)

  28. Keresztely, S.: Coordinated Control of Electrical Drives. Springer, Berling (1983)

    Google Scholar 

  29. Giles, A.D.; Reguera, L.; Roscoe, A.J.: Optimal controller gains for inner current controllers in VSC inverters. In: International Conference on Renewable Power Generation (RPG 2015), p. 6 (2015)

  30. Murali, M.; Gokhale, A.; Pandey, A.V.; Sharma, E.: Modelling, design and comparison of PI and PID controllers for Static Synchronous Compensator (STATCOM). In: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1–6 (2016)

  31. Qiang, G.; Guangming, Z.; Qi, L.; Bin, Y.; Kun, M.; Peng, Y.: The controller design and simulation of VSCMTDC system. In: 2015 4th International Conference on Computer Science and Network Technology (ICCSNT), pp. 749–753 (2015)

  32. Mao, M.; Zhang, Z.; Ding, Y.; Chang, L.: Design of PI parameters based on analytical method for CSC-PMSG-WGS. In: 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1–7 (2015)

  33. Pullaguram, D.; Mishra, S.; Senroy, N.; Mukherjee, M.: Design and tuning of robust fractional order controller for autonomous microgrid VSC system. IEEE Trans. Ind. Appl. 54(1), 91–101 (2018)

    Article  Google Scholar 

  34. Huang, C.; Zhao, L.: Design of controller for VSC-HVDC systems with the alpha beta stationary frame. In: 2012 Asia-Pacific Power and Energy Engineering Conference, pp. 1–4 (2012)

  35. Yazdani, A.; Iravani, R.: Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications. IEEE Press/Wiley, New York (2010)

    Book  Google Scholar 

  36. Shinners, S.M.: Modern Control System Theory and Design. Wiley, New York (1998)

    MATH  Google Scholar 

  37. Braae, M.: Explicit damping factor specification in symmetrical optimum tuning of PI controllers. Semantic Scholar (2003)

  38. Leonhard, W.: Control of Electrical Drives. Springer, New York (2001)

    Book  Google Scholar 

  39. Preitl, S.; Precup, R.-E.: An extension of tuning relations after symmetrical optimum method for PI and PID controllers. Automatica 35(10), 1731–1736 (1999)

    Article  Google Scholar 

  40. Aydin, O.; Akdag, A.; Stefanutti, P.; Hugo, N.: Optimum controller design for a multilevel AC-DC converter system. In: Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005, vol. 3, pp. 1660–1666

Download references

Acknowledgements

The authors would like to acknowledge the support provided by King Fahd University of Petroleum and Minerals through the Research Group funded project # DF191004. The authors also acknowledge the funding support by King Abdullah City for Atomic and Renewable Energy (K.A.CARE), Energy Research and Innovation Center (ERIC) at KFUPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abido.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.I., Shafiullah, M. & Abido, M. VSC Controllers for Multiterminal HVDC Transmission System: A Comparative Study. Arab J Sci Eng 45, 6411–6422 (2020). https://doi.org/10.1007/s13369-020-04500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04500-y

Keywords

Navigation