Skip to main content
Log in

Extraction of Indium from By-products of Zinc Metallurgy by Ultrasonic Waves

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The extraction of indium from hard zinc slag is a relatively common method, but it is desired to further improve the leaching efficiency of indium. The leaching effect of indium from a hard zinc slag via ultrasonication was studied. We have found that the infiltration efficiency of indium can be improved by ultrasonic waves through its cavitation effect, mechanical effect, etc. The use of calcium hypochlorite instead of the chlorine used in the conventional method as an oxidant reduces corrosion of the equipment and does not pollute the environment. In this paper, HCl–CaCl2 and Ca(ClO)2 were employed as a leaching agent and oxidant, respectively. The effects of ultrasonic power, leaching time, initial acidity, reaction temperature, concentration of CaCl2, and amount of Ca(ClO)2 on the leaching rate of indium from zinc metallurgy by-products were investigated. The optimum conditions were as follows: ultrasonic power 700 W, reaction temperature 70 °C, leaching time 50 min with ultrasonication and 60 min without ultrasonication, HCl concentration 4.5 mol/L, CaCl2 concentration 150 g/L, and oxidizing agent concentration 35 g/L. Under the optimal conditions, the leaching rate of indium was 96.42% with ultrasonication and 94.8% without ultrasonication. The effect of the ultrasonic waves on the slag during hard zinc leaching was studied by scanning electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koleini, S.M.J.; Mehrpouya, H.; Saberyan, K.; et al.: Extraction of indium from zinc plant residues. Miner. Eng. 23(1), 51–53 (2010)

    Article  Google Scholar 

  2. Hassanien, M.M.; Kenawy, I.M.; Mostafa, M.R.; et al.: Extraction of gallium, indium and thallium from aquatic media using amino silica gel modified by gallic acid. Microchim. Acta 172(1–2), 137–145 (2011)

    Article  Google Scholar 

  3. Nishihama, S.; Hirai, T.; Komasawa, I.: Separation and recovery of gallium and indium from simulated zinc refinery residue by liquid–liquid extraction. Ind. Eng. Chem. Res. 38(3), 1032–1039 (1999)

    Article  Google Scholar 

  4. Zhang, F.; Wei, C.; Deng, Z.G.; et al.: Reductive leaching of zinc and indium from industrial zinc ferrite particulates in sulphuric acid media. Trans. Nonferrous Met. Soc. China 26(9), 2495–2501 (2016)

    Article  Google Scholar 

  5. Karavasteva, M.: The effect of magnesium and zinc on indium cementation kinetics and deposit morphology in the presence of and without nonylphenylpolyethylene glycol. Hydrometallurgy 150, 47–51 (2014)

    Article  Google Scholar 

  6. Pourrahim, M.; Rezai, B.; Gharabaghi, M.: Comparison of indium and gallium dissolution from zinc oxide concentrate in different acidic solutions. Arab. J. Sci. Eng. 42(4), 1591–1600 (2017)

    Article  Google Scholar 

  7. Cum, G.; Galli, G.; Gallo, R.; et al.: Role of frequency in the ultrasonic activation of chemical reactions. Ultrasonics 30(4), 267–270 (1992)

    Article  Google Scholar 

  8. Oncel, M.S.; Ince, M.; Bayramoglu, M.: Leaching of silver from solid waste using ultrasound assisted thiourea method. Ultrason. Sonochem. 12(3), 237–242 (2005)

    Article  Google Scholar 

  9. Wang, X.; Yang, D.J.; Srinivasakannan, C.; et al.: A comparison of the conventional and ultrasound-augmented leaching of zinc residue using sulphuric acid. Arab. J. Sci. Eng. 39(1), 163–173 (2014)

    Article  Google Scholar 

  10. Wang, X.; Srinivasakannan, C.; Duan, X.H.; et al.: Leaching kinetics of zinc residues augmented with ultrasound. Sep. Purif. Technol. 115(2), 66–72 (2013)

    Google Scholar 

  11. Li, L.; Zhai, L.; Zhang, X.; et al.: Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J. Power Sources 262, 380–385 (2014)

    Article  Google Scholar 

  12. Güngör, H.; Elik, A.: Comparison of ultrasound-assisted leaching with conventional and acid bomb digestion for determination of metals in sediment samples. Microchem. J. 86(1), 65–70 (2007)

    Article  Google Scholar 

  13. Jordens, J.; De, C.N.; Gielen, B.; et al.: Ultrasound precipitation of manganese carbonate: the effect of power and frequency on particle properties. Ultrason. Sonochem. 26, 64–72 (2015)

    Article  Google Scholar 

  14. Xiping, X.; Chongfang, M.; Wei, W.: Application situation of ultrasonic technology. Shanxi Chem. Ind. 027(001), 25–29 (2007)

    Google Scholar 

  15. Ying, L.; Zhao, D.; Yuan, Q.: Research. Development and application of ultrasound wave in petrochemical industry, Petrochem. Technol. (2005)

    Google Scholar 

  16. Luque-García, J.L.; Castro, M.: Ultrasound: a powerful tool for leaching. Trends Anal. Chem. 22(1), 41–47 (2003)

    Article  Google Scholar 

  17. Zhang, R.L.; Zhang, X.F.; Tang, S.Z.; et al.: Ultrasound-assisted HCl–NaCl leaching of lead-rich and antimony-rich oxidizing slag. Ultrason. Sonochem. 27, 187–191 (2015)

    Article  Google Scholar 

  18. Henglein, A.: Contributions to various aspects of cavitation chemistry. Adv. Sonochem. 3, 17–83 (1993)

    Google Scholar 

  19. Mason, T.J.; Cobley, A.J.; Graves, J.E.; et al.: New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrason. Sonochem. 18(1), 226–230 (2011)

    Article  Google Scholar 

  20. Şayan, E.; Bayramoğlu, M.: Statistical modeling and optimization of ultrasound-assisted sulfuric acid leaching of TiO2 from red mud. Hydrometallurgy 71(3), 397–401 (2004)

    Article  Google Scholar 

  21. Ren, G.X.; Xiao, S.W.; Xie, M.Q.; et al.: Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO–SiO2–Al2O3, slag system. J. Sustain. Metallur. 27(2), 1–8 (2017)

    Google Scholar 

  22. Du, F.; Li, J.; Li, X.; et al.: Improvement of iron removal from silica sand using ultrasonic-assisted oxalic acid. Ultrason. Sonochem. 18(1), 389–393 (2011)

    Article  Google Scholar 

  23. Xie, H.; Zhang, L.; Li, H.; Li, S.; Chen, K.; Zhang, B.; Zhou, M.: Ultrasonic-enhanced replacement of lead in lead hydrometallurgy process from lead leaching solution. R. Soc. Open Sci. 6(7), 190042 (2019)

    Article  Google Scholar 

  24. Mason, T.; Lorimer, J.; Bates, D.; et al.: Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason. Sonochem. 1(2), S91–S95 (1994)

    Article  Google Scholar 

  25. De La Rochebrochard, S.; Naffrechoux, E.; Drogui, P.; et al.: Low frequency ultrasound-assisted leaching of sewage sludge for toxic metal removal, dewatering and fertilizing properties preservation. Ultrason. Sonochem. 20(1), 109–117 (2013)

    Article  Google Scholar 

  26. Bulat, T.: Macrosonics in industry: 3. Ultrasonic cleaning. Ultrasonics 12(2), 59–68 (1974)

    Article  Google Scholar 

  27. Liu, X.; Chen, B.; Li, W.; et al.: Recycle of wastewater from lead-zinc sulfide ore flotation process by ozone/BAC technology. J. Environ. Prot. 04(1), 5–9 (2013)

    Article  Google Scholar 

  28. Sanin, V.N.: Self-propagating high-temperature synthesis metallurgy of pipes with wear-resistant protective coating with the use of industrial wastes of metallurgy production. Russ. J. Non Ferrous Met. 54(3), 274–279 (2013)

    Article  Google Scholar 

  29. Pesic, B.; Zhou, T.: Application of ultrasonic in extractive metallurgy: sonochemical extraction of nickel. Metall. Trans. B 23(1), 13–22 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by the Yunnan Provincial Science and Technology key project (No. 2017FA026), National Natural Science Foundation of China (51404115), Kunming Academician Workstation of Advanced Preparation for Superhard Materials Field and Kunming Key Laboratory of Special Metallurgy, Kunming University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Li or Libo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Luo, Y., Yu, X. et al. Extraction of Indium from By-products of Zinc Metallurgy by Ultrasonic Waves. Arab J Sci Eng 45, 7321–7328 (2020). https://doi.org/10.1007/s13369-020-04471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04471-0

Keywords

Navigation