Skip to main content
Log in

Effective Remediation of an Antibacterial Drug from Aqua Matrix Using CaFe2O4/ZrO2 Nanocomposite Derived via Inorganic Chemical Pathway: Statistical Modelling by Response Surface Methodology

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

With the rapid development in nanotechnology, the preparation of novel self-assembled nanoscale composite materials and their numerous environmental applications have become a promising area of research among the environmental scientists. In view of above, the present study aims at fabrication of a mesoporous nanoscale material of calcium ferrite-zirconium oxide-magnetic nanocomposite (CF-ZrO-MNC) to explore its application in adsorption-driven remediation process of tetracycline (TC). The characterisation study of the so-prepared CF-ZrO-MNC has revealed the presence of 0.1213 cc/g of mesoporous volume with a specific surface area of 95.32 m2/g. A comparative study performed between CF-ZrO-MNC, CaFe2O4 and ZrO2 nanoparticles has proven the superior adsorption capability of CF-ZrO-MNC for TC over the pure phases of parent CaFe2O4 and ZrO2 nanoparticles. The optimisation of TC adsorption process was performed by response surface methodology, which has revealed that 98.14% of TC removal can be obtained within 60 min of contact time using 4.0 g/L of CF-ZrO-MNC dose with 40.0 mg/L of TC concentration at solution pH 6.0. The kinetic and isotherm studies have presented pseudo-second-order kinetic and Freundlich isotherm model as the best-fitted models, respectively. The results of Langmuir isotherm model fitting indicated that CF-ZrO-MNC poses 92.59 mg/g of maximum TC adsorption capacity which has been proven to be highly effective as compared to previously reported adsorbents for the remediation of TC from aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Daghrir, R.; Drogui, P.: Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 11, 209–227 (2013)

    Article  Google Scholar 

  2. Ravikumar, K.V.G.; Kubendiran, H.; Ramesh, K.; Rani, S.; Mandal, T.K.; Pulimi, M.; Natarajan, C.; Mukherjee, A.: Batch and column study on tetracycline removal using green synthesized NiFe nanoparticles immobilized alginate beads. Environ. Technol. Innov. 17, 100520 (2019)

    Google Scholar 

  3. Debnath, B.; Majumdar, M.; Bhowmik, M.; Bhowmik, K.L.; Debnath, A.; Roy, D.N.: The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology. J. Environ. Manag. 261, 110235 (2020)

    Article  Google Scholar 

  4. Al-rimawi, F.; Daana, M.; Khamis, M.; Karaman, R.; Khoury, H.; Qurie, M.: Removal of selected pharmaceuticals from aqueous solutions using natural Jordanian zeolite. Arab. J. Sci. Eng. 44, 209–215 (2019)

    Article  Google Scholar 

  5. Meng, X.; Liu, Z.; Deng, C.; Zhu, M.; Wang, D.; Li, K.; Deng, Y.; Jiang, M.: Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal. J. Hazard. Mater. 320, 495–503 (2016)

    Article  Google Scholar 

  6. Rivera-Utrilla, J.; Gómez-Pacheco, C.V.; Sánchez-Polo, M.; López-Peñalver, J.J.; Ocampo-Pérez, R.: Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. J. Environ. Manag. 131, 16–24 (2013)

    Article  Google Scholar 

  7. Yamani, Z.: Magnetic properties and photocatalytic degradation performance of MFe2O4 (M = Co, Ni)/BiOCl composites catalysts under UV light irradiation. Arab. J. Sci. Eng. 43, 383–388 (2018)

    Article  Google Scholar 

  8. Xing, R.; Wang, W.; Jiao, T.; Ma, K.; Zhang, Q.; Hong, W.; Qiu, H.; Zhou, J.; Zhang, L.; Peng, Q.: Bioinspired polydopamine sheathed nanofibers containing carboxylate graphene oxide nanosheet for high-efficient dyes scavenger. ACS Sustain. Chem. Eng. 5, 4948–4956 (2017)

    Article  Google Scholar 

  9. Hou, N.; Wang, R.; Geng, R.; Wang, F.; Jiao, T.; Zhang, L.; Zhou, J.; Bai, Z.; Peng, Q.: Facile preparation of self-assembled hydrogels constructed from poly-cyclodextrin and poly-adamantane as highly selective adsorbents for wastewater treatment. Soft Matter 15, 6097–6106 (2019)

    Article  Google Scholar 

  10. Zhu, J.; Wang, R.; Geng, R.; Zhang, X.; Wang, F.; Jiao, T.; Yang, J.; Bai, Z.; Peng, Q.: A facile preparation method for new two-component supramolecular hydrogels and their performances in adsorption, catalysis, and stimuli-response. RSC Adv. 9, 22551–22558 (2019)

    Article  Google Scholar 

  11. Zhang, Y.; Jiao, Z.; Hu, Y.; Lv, S.; Fan, H.; Zeng, Y.; Hu, J.; Wang, M.: Removal of tetracycline and oxytetracycline from water by magnetic Fe3O4@ graphene. Environ. Sci. Pollut. Res. 24, 2987–2995 (2017)

    Article  Google Scholar 

  12. Chang, P.H.; Li, Z.; Jean, J.S.; Jiang, W.T.; Wang, C.J.; Lin, K.H.: Adsorption of tetracycline on 2: 1 layered non-swelling clay mineral illite. Appl. Clay Sci. 67, 158–163 (2012)

    Article  Google Scholar 

  13. Takdastan, A.; Mahvi, A.H.; Lima, E.C.; Shirmardi, M.; Babaei, A.A.; Goudarzi, G.; Neisi, A.; Farsani, M.H.; Vosoughi, M.: Preparation, characterization, and application of activated carbon from low-cost material for the adsorption of tetracycline antibiotic from aqueous solutions. Water Sci. Technol. 74, 2349–2363 (2016)

    Article  Google Scholar 

  14. Xiong, W.; Zeng, G.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Liu, Y.; Hu, L.; Wan, J.; Zhou, C.; Xu, R.; Li, X.: Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbent. Sci. Total Environ. 627, 235–244 (2018)

    Article  Google Scholar 

  15. Liu, H.; Yang, Y.; Kang, J.; Fan, M.; Qu, J.: Removal of tetracycline from water by Fe-Mn binary oxide. J. Environ. Sci. 24, 242–247 (2012)

    Article  Google Scholar 

  16. Caroni, A.L.P.F.; De Lima, C.R.M.; Pereira, M.R.; Fonseca, J.L.C.: Tetracycline adsorption on chitosan: a mechanistic description based on mass uptake and zeta potential measurements. Colloids Surf. B 100, 222–228 (2012)

    Article  Google Scholar 

  17. Zhang, Z.; Liu, H.; Wu, L.; Lan, H.; Qu, J.: Preparation of amino-Fe(III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper. Chemosphere 138, 625–632 (2015)

    Article  Google Scholar 

  18. Shao, L.; Ren, Z.; Zhang, G.; Chen, L.: Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal. Mater. Chem. Phys. 135, 16–24 (2012)

    Article  Google Scholar 

  19. Chu, J.Y.; Lee, K.H.; Kim, A.R.; Yoo, D.J.: Graphene-mediated organic-inorganic composites with improved hydroxide conductivity and outstanding alkaline stability for anion exchange membranes. Compos. B Eng. 164, 324–332 (2019)

    Article  Google Scholar 

  20. Zhao, J.; Yin, J.; Zhong, J.; Jiao, T.; Bai, Z.; Wang, S.; Zhang, L.; Peng, Q.: Facile preparation of a self-assembled Artemia cyst shell–TiO2–MoS2 porous composite structure with highly efficient catalytic reduction of nitro compounds for wastewater treatment. Nanotechnology 31, 085603 (2019)

    Article  Google Scholar 

  21. Geng, R.; Yin, J.; Zhou, J.; Jiao, T.; Feng, Y.; Zhang, L.; Chen, Y.; Bai, Z.; Peng, Q.: In situ construction of Ag/TiO2/g-C3N4 heterojunction nanocomposite based on hierarchical co-assembly with sustainable hydrogen evolution. Nanomaterials 10, 1 (2020)

    Article  Google Scholar 

  22. Lal, G.; Punia, K.; Dolia, S.N.; Alvi, P.A.; Dalela, S.; Kumar, S.: Rietveld refinement, Raman, optical, dielectric, Mössbauer and magnetic characterization of superparamagnetic fcc-CaFe2O4 nanoparticles. Ceram. Int. 45, 5837–5847 (2019)

    Article  Google Scholar 

  23. Debnath, A.; Majumder, M.; Pal, M.; Das, N.S.; Chattopadhyay, K.K.; Saha, B.: Enhanced adsorption of hexavalent chromium onto magnetic calcium ferrite nanoparticles: kinetic, isotherm, and neural network modeling. J. Dispers. Sci. Technol. 37, 1806–1818 (2016)

    Article  Google Scholar 

  24. Deb, A.; Kanmani, M.; Debnath, A.; Bhowmik, K.L.; Saha, B.: Preparation and characterization of magnetic CaFe2O4 nanoparticles for efficient adsorption of toxic Congo Red dye from aqueous solution: predictive modeling by artificial neural network. Desalination Water Treat. 89, 197–209 (2017)

    Article  Google Scholar 

  25. Singh, A.K.; Nakate, U.T.: Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia. Sci. World J. 2014, 1–7 (2014)

    Google Scholar 

  26. Zheng, Y.M.; Yu, L.; Wu, D.; Chen, J.P.: Removal of arsenite from aqueous solution by a zirconia nanoparticle. Chem. Eng. J. 188, 15–22 (2012)

    Article  Google Scholar 

  27. Rao, R.A.K.; Singh, S.; Singh, B.R.; Khan, W.; Naqvi, A.H.: Synthesis and characterization of surface modified graphene–zirconium oxide nanocomposite and its possible use for the removal of chlorophenol from aqueous solution. J. Environ. Chem. Eng. 2, 199–210 (2014)

    Article  Google Scholar 

  28. Su, Y.; Yang, W.; Sun, W.; Li, Q.; Shang, J.K.: Synthesis of mesoporous cerium–zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water. Chem. Eng. J. 268, 270–279 (2015)

    Article  Google Scholar 

  29. Bhowmik, M.; Kanmani, M.; Debnath, A.; Saha, B.: Sono-assisted rapid adsorption of anionic dye onto magnetic CaFe2O4/MnFe2O4 nanocomposite from aqua matrix. Powder Technol. 354, 496–504 (2019)

    Article  Google Scholar 

  30. Fakhri, A.; Behrouz, S.: Comparison studies of adsorption properties of MgO nanoparticles and ZnO–MgO nanocomposites for linezolid antibiotic removal from aqueous solution using response surface methodology. Process Saf. Environ. 94, 37–43 (2015)

    Article  Google Scholar 

  31. Zhang, B.; Han, X.; Gu, P.; Fang, S.; Bai, J.: Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J. Mol. Liq. 238, 316–325 (2017)

    Article  Google Scholar 

  32. Cui, H.; Li, Q.; Gao, S.; Shang, J.K.: Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J. Ind. Eng. Chem. 18, 1418–1427 (2012)

    Article  Google Scholar 

  33. Gusain, D.; Bux, F.; Sharma, Y.C.: Abatement of chromium by adsorption on nanocrystalline zirconia using response surface methodology. J. Mol. Liq. 197, 131–141 (2014)

    Article  Google Scholar 

  34. Guo, R.; Jiao, T.; Li, R.; Chen, Y.; Guo, W.; Zhang, L.; Zhou, J.; Zhang, Q.; Peng, Q.: Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal. ACS Sustain. Chem. Eng. 6, 1279–1288 (2018)

    Article  Google Scholar 

  35. Gusain, D.; Upadhyay, S.N.; Sharma, Y.C.: Adsorption of Orange G dye on nano zirconia: error analysis for achieving the best equilibrium and kinetic modeling. RSC Adv. 4, 18755–18762 (2014)

    Article  Google Scholar 

  36. Satheesh, R.; Vignesh, K.; Rajarajan, M.; Suganthi, A.; Sreekantan, S.; Kang, M.; Kwak, B.S.: Removal of congo red from water using quercetin modified α-Fe2O3 nanoparticles as effective nanoadsorbent. Mater. Chem. Phys. 180, 53–65 (2016)

    Article  Google Scholar 

  37. Costa, J.A.S.; de Jesus, R.A.; da Silva, C.M.P.; Romão, L.P.C.: Efficient adsorption of a mixture of polycyclic aromatic hydrocarbons (PAHs) by Si–MCM–41 mesoporous molecular sieve. Powder Technol. 308, 434–441 (2017)

    Article  Google Scholar 

  38. Hiew, B.Y.Z.; Lee, L.Y.; Lai, K.C.; Gan, S.; Thangalazhy-Gopakumar, S.; Pan, G.T.; Yang, T.C.K.: Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environ. Res. 168, 241–253 (2019)

    Article  Google Scholar 

  39. Okoli, C.P.; Ofomaja, A.E.: Development of sustainable magnetic polyurethane polymer nanocomposite for abatement of tetracycline antibiotics aqueous pollution: response surface methodology and adsorption dynamics. J. Clean. Prod. 217, 42–55 (2019)

    Article  Google Scholar 

  40. Bhowmik, M.; Deb, K.; Debnath, A.; Saha, B.: Mixed phase Fe2O3/Mn3O4 magnetic nanocomposite for enhanced adsorption of methyl orange dye: neural network modeling and response surface methodology optimization. Appl. Organomet. Chem. 32, e4186 (2018)

    Article  Google Scholar 

  41. Liu, Q.; Zhong, L.B.; Zhao, Q.B.; Frear, C.; Zheng, Y.M.: Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Appl. Mater. Interfaces 7, 14573–14583 (2015)

    Article  Google Scholar 

  42. Huang, B.; Liu, Y.; Li, B.; Liu, S.; Zeng, G.; Zeng, Z.; Wang, X.; Ning, Q.; Zheng, B.; Yang, C.: Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@ SiO2-Chitosan/graphene oxide nanocomposite. Carbohydr. Polym. 157, 576–585 (2017)

    Article  Google Scholar 

  43. Azhar, M.R.; Abid, H.R.; Sun, H.; Periasamy, V.; Tadé, M.O.; Wang, S.: Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. J. Colloid Interface Sci. 478, 344–352 (2016)

    Article  Google Scholar 

  44. Asfaram, A.; Ghaedi, M.; Azqhandi, M.H.A.; Goudarzi, A.; Hajati, S.: Ultrasound-assisted binary adsorption of dyes onto Mn@ CuS/ZnS-NC-AC as a novel adsorbent: application of chemometrics for optimization and modeling. J. Ind. Eng. Chem. 54, 377–388 (2017)

    Article  Google Scholar 

  45. Zhang, S.; Dong, Y.; Yang, Z.; Yang, W.; Wu, J.; Dong, C.: Adsorption of pharmaceuticals on chitosan-based magnetic composite particles with core-brush topology. Chem. Eng. J. 304, 325–334 (2016)

    Article  Google Scholar 

  46. Nodeh, H.R.; Sereshti, H.: Synthesis of magnetic graphene oxide doped with strontium titanium trioxide nanoparticles as a nanocomposite for the removal of antibiotics from aqueous media. RSC Adv. 6, 89953–89965 (2016)

    Article  Google Scholar 

  47. Lin, Y.; Xu, S.; Li, J.: Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chem. Eng. J. 225, 679–685 (2013)

    Article  Google Scholar 

  48. Zhang, Z.; Lan, H.; Liu, H.; Li, H.; Qu, J.: Iron-incorporated mesoporous silica for enhanced adsorption of tetracycline in aqueous solution. RSC Adv. 5, 42407–42413 (2015)

    Article  Google Scholar 

  49. Hanay, Ö.; Yıldız, B.; Aslan, S.; Hasar, H.: Removal of tetracycline and oxytetracycline by microscale zerovalent iron and formation of transformation products. Environ. Sci. Pollut. Res. 21, 3774–3782 (2014)

    Article  Google Scholar 

  50. Chen, Y.; Wang, F.; Duan, L.; Yang, H.; Gao, J.: Tetracycline adsorption onto rice husk ash, an agricultural waste: its kinetic and thermodynamic studies. J. Mol. Liq. 222, 487–494 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study has been carried out with the financial support of the Council of Scientific and Industrial Research (CSIR), Government of India (Grant No. 22/0744/17/EMR-II). The authors are also grateful to the CRF facility of NIT Agartala for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Debnath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmik, M., Debnath, A. & Saha, B. Effective Remediation of an Antibacterial Drug from Aqua Matrix Using CaFe2O4/ZrO2 Nanocomposite Derived via Inorganic Chemical Pathway: Statistical Modelling by Response Surface Methodology. Arab J Sci Eng 45, 7289–7303 (2020). https://doi.org/10.1007/s13369-020-04465-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04465-y

Keywords

Navigation