Skip to main content

A Novel Fuzzy PI Control Approach for Nonlinear Processes

Abstract

Classical fuzzy logic controllers fail to control nonlinear systems, which have strong nonlinearity around a certain operating point. In this case, if it is possible, the block-oriented modeling approach could be adopted to separate the highly nonlinear system into two subsystems as a linear time-invariant subsystem and a memoryless nonlinear subsystem. Thereby, a control operation could be carried out on the linear time-invariant block to control the whole system. Respecting this approach, here, a highly nonlinear system (neutralization process) was modeled by using the ARX–polynomial cascade connection. By this means, an opportunity is obtained that the inverse polynomial is utilized to be able to control the ARX subsystem by a classical fuzzy PI controller. And therefore, the fuzzy PI controller performance in controlling nonlinear processes was enhanced. The success of the new approach was confirmed by the results obtained from the control operation carried out in different pH regions for a chemical neutralization process. And also, the results show that the proposed control strategy is as successful as the multiregion fuzzy PI controller in the highly nonlinear process control.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Salehi, S.; Shahrokhi, M.; Nejati, A.: Adaptive nonlinear control of pH neutralization processes using fuzzy approximators. Control Eng. Pract. 17, 1329–1337 (2009)

    Google Scholar 

  2. Holaza, J.; Klauco, M.; Drgona, J.; Oravec, J.; Kvasnica, M.; Fikar, M.: MPC-based reference governor control of a continuous stirred-tank reactor. Comput. Chem. Eng. 108, 289–299 (2018)

    Google Scholar 

  3. Qin, S.; Border, G.: A multiregion fuzzy logic controller for nonlinear process control. IEEE Trans. Fuzzy Syst. 2, 74–81 (1994)

    Google Scholar 

  4. Fuente, M.; Robles, C.; Casado, O.; Syafiie, S.; Tadeo, F.: Fuzzy control of a pH neutralization process. Eng. Appl. Artif. Intell. 19, 905–914 (2006)

    Google Scholar 

  5. Lawrynczuk, M.: Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models. Neurocomputing 205, 311–328 (2016)

    Google Scholar 

  6. Zarate, L.; Resende, P.: Fuzzy sliding mode controller for a pH process in stirred tanks. Intell. Autom. Soft Comput. 18, 349–367 (2012)

    Google Scholar 

  7. Heredia-Molinero, M.; Sanches-Prieto, J.; Briongos, J.; Palancar, M.: Feedback PID-like fuzzy controller for pH regulatory control near the equivalence point. J. Process Control 24, 1023–1037 (2014)

    Google Scholar 

  8. Kumbasar, T.; Eksin, I.; Guzelkaya, M.; Yesil, E.: An inverse controller design method for interval type-2 fuzzy models. Soft Comput. 21, 2665–2686 (2017)

    MATH  Google Scholar 

  9. Nsengiyumva, W.; Chen, X.: Design and implementation of a novel self-adaptive fuzzy logic controller for a pH neutralization process. Adv. Eng. Res. 127, 97–103 (2018)

    Google Scholar 

  10. Li, F.; Li, J.; Peng, D.: Identification method of neuro-fuzzy-based Hammerstein model with coloured noise. IET Control Theory Appl. 11, 3026–3037 (2017)

    MathSciNet  Google Scholar 

  11. Zhang, F.; Yang, C.; Zhou, X.; Zhu, H.: Fractional order fuzzy PID optimal control in copper removal process of zinc hydrometallurgy. Hydrometallurgy 178, 60–76 (2018)

    Google Scholar 

  12. Bingi, K.; Ibrahim, R.; Karsiti, M.N.; Hassan, S.M.: Fractional order set-point weighted PID controller for pH neutralization process using accelerated PSO algorithm. Arab. J. Sci. Eng. 43, 2687–2701 (2018)

    Google Scholar 

  13. Mahmoodi, S.; Poshtan, J.; Jahed-Motlagh, M.; Montazeri, A.: Nonlinear model predictive control of a pH neutralization process based on Wiener–Laguerre model. Chem. Eng. J. 146, 328–337 (2009)

    Google Scholar 

  14. Wang, Q.; Zhang, J.: Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines. J. Zhejiang Univ. Sci. C 12, 25–35 (2011)

    Google Scholar 

  15. Shaaban, Y.; Tahir, F.; Masting, P.; Mack, J.; Lennox, B.: Control improvement using MPC: a case study of pH control for brine dechlorination. IEEE Access 6, 13418–13428 (2018)

    Google Scholar 

  16. Vatankhah, B.; Farrokhi, M.: Nonlinear model-predictive control with disturbance rejection property using adaptive neural networks. J. Frankl. Inst. 354, 5201–5220 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Gerksic, S.; Juricic, D.; Strmcnik, S.; Matko, D.: Wiener model based nonlinear predictive control. Int. J. Syst. Sci. 31, 189–202 (2000)

    MATH  Google Scholar 

  18. Salhi, S.; Kamoun, S.; Essounbouli, N.; Hamzaoui, A.: Adaptive discrete-time sliding-mode control of nonlinear systems described by Wiener models. Int. J. Control 89, 611–622 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Greblicki, W.; Pawlak, M.: Hammerstein system identification with the nearest neighbor algorithm. IEEE Trans. Inf. Theory 63, 4746–4757 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Al-Duawish, H.N.: Identification of Hammerstein models with known nonlinearity structure using particle swarm optimization. Arab. J. Sci. Eng. 36, 1269–1276 (2011)

    Google Scholar 

  21. Jia, L.; Xiong, Q.; Li, F.: Correlation analysis method based SISO neuro-fuzzy Wiener model. J. Process Control 58, 73–89 (2017)

    Google Scholar 

  22. Tang, Y.; Han, Z.; Liu, F.; Guan, X.: Identification and control of nonlinear system based on Laguerre-ELM Wiener model. Commun. Nonlinear Sci. Numer. Simul. 38, 192–205 (2016)

    MathSciNet  Google Scholar 

  23. Ma, J.; Zhao, Z.; Han, Z.; Tang, Y.: Identification of Wiener model using least squares support vector machine optimized by adaptive particle swarm optimization. J. Control Autom. Electr. Syst. 26, 609–615 (2015)

    Google Scholar 

  24. Aliskan, I.: Adaptive model predictive control for Wiener nonlinear systems. Iran. J. Sci. Technol. Trans. Electr. Eng. 43, 361–377 (2019)

    Google Scholar 

  25. Sarhadi, P.; Rezaie, B.; Rahmani, Z.: Adaptive predictive control based on adaptive neuro-fuzzy inference system for a class of nonlinear industrial processes. J. Taiwan Inst. Chem. Eng. 61, 132–137 (2016)

    Google Scholar 

  26. Kazemi, M.; Arefi, M.: A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. ISA Trans. 67, 382–388 (2017)

    Google Scholar 

  27. Norquay, S.; Palazoglu, A.; Romagnoli, J.: Model predictive control based on Wiener models. Chem. Eng. Sci. 53, 75–84 (1998)

    Google Scholar 

  28. Ljung, L.: System Identification. Prentice Hall, New Jersey (1999)

    MATH  Google Scholar 

  29. Almasi, O.; Fereshtehpoor, V.; Khooban, M.; Blaabjerg, F.: Analysis, control and design of a non-inverting buck-boost converter: a bump-less two-level T–S fuzzy PI control. ISA Trans. 67, 515–527 (2017)

    Google Scholar 

  30. Chua, K.; Lim, Y.; Morris, S.: A novel fuzzy control algorithm for reducing the peak demands using energy storage system. Energy 122, 265–273 (2017)

    Google Scholar 

  31. Bakdi, A.; Hentout, A.; Boutami, H.; Maoudj, A.; Hachour, O.; Bouzouia, B.: Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robot. Auton. Syst. 89, 95–109 (2017)

    Google Scholar 

  32. Abedini, M.; Mahmodi, E.; Mousavi, M.; Chaharmahali, I.: A novel fuzzy PI controller for improving autonomous network by considering uncertainty. Sustain. Energy Grids Netw. 18, 1–11 (2019)

    Google Scholar 

  33. Zaki, A.M.; El-Bardini, M.; Soliman, F.A.S.; Sharaf, M.M.: Embedded indirect adaptive fuzzy controller based on T–S fuzzy inverse model. Arab. J. Sci. Eng. 41, 3727–3737 (2016)

    Google Scholar 

  34. Kurczyk, S.: Pawelczyk, M: Fuzzy control for semi-active vehicle suspension. J. Low Freq. Noise Vib. Active Control 32, 217–225 (2013)

    Google Scholar 

  35. Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M.: Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection. Renew. Energy 117, 257–274 (2018)

    Google Scholar 

  36. Chen, G.; Pham, T.: Introduction to Fuzzy Sets, Fuzzy Logic and Fuzzy Control Systems. CRC Press, New York (2000)

    Google Scholar 

  37. Misir, D.; Malki, H.; Chen, G.: Design and analysis of a fuzzy proportional-integral-derivative controller. Fuzzy Sets Syst. 79, 297–314 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Kumar, V.; Mittal, A.P.; Singh, R.: Stability analysis of parallel fuzzy P + fuzzy I + fuzzy D control systems. Int. J. Autom. Comput. 10, 91–98 (2013)

    Google Scholar 

  39. Tötterman, S.; Toivonen, H.T.: Support vector method for identification of Wiener models. J. Process Control 19, 1174–1181 (2009)

    Google Scholar 

  40. Zou, Z.; Yu, M.; Wang, Z.; Liu, X.; Guo, Y.; Zhang, F.; Guo, N.: Nonlinear model algorithmic control of a pH neutralization process. Chin. J. Chem. Eng. 21, 395–400 (2013)

    Google Scholar 

  41. Yuan, P.; Zhang, B.; Mao, Z.: A self-tuning control method for Wiener nonlinear systems and its application to process control problems. Chin. J. Chem. Eng. 25, 193–201 (2017)

    Google Scholar 

  42. Vörös, J.: Identification of nonlinear cascade systems with noninvertible piecewise linear input and backlash output nonlinearities. J. Electr. Eng. 67, 279–285 (2016)

    Google Scholar 

  43. Wachel, P.; Mzyk, G.: Direct identification of the linear block in Wiener system. Int. J. Adapt. Control Signal Process. 30, 93–105 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Ding, F.; Liu, X.; Liu, M.: The recursive least squares identification algorithm for a class of Wiener nonlinear systems. J. Frankl. Inst. 353, 1518–1526 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Hagglund, T.; Astrom, K.: Revisiting the Ziegler-Nichols tuning rules for the PI control. Asian J. Control 4, 364–380 (2002)

    Google Scholar 

  46. Kazemi, M.; Arefi, M.: Nonlinear generalized minimum variance control and control performance assessment of nonlinear systems based on a Wiener model. Trans. Inst. Measur. Control 40, 1538–1553 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Aliskan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aliskan, I. A Novel Fuzzy PI Control Approach for Nonlinear Processes. Arab J Sci Eng 45, 6821–6834 (2020). https://doi.org/10.1007/s13369-020-04463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04463-0

Keywords

  • Fuzzy PI control
  • Nonlinear systems
  • Process control
  • System identification