Skip to main content
Log in

A Survey on Secure Transmission in Internet of Things: Taxonomy, Recent Techniques, Research Requirements, and Challenges

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Internet of things (IoT) is one of the emerging paradigms in the current era that has attracted many researchers due to its widespread applications. Due to the open nature of the device accessibility and heterogeneity, a rapid increase in connected devices leads to several vulnerabilities and threats in the IoT devices. Hence, security is one of the important concern and main challenge to be addressed for the guaranteed data transmission in IoT environment. In this review work, we analyze the secure transmission of data in IoT and investigate the recent approaches in IoT security and their requirements and open issues. We present a taxonomy model for the secure transmission in IoT security which includes architecture/layers, communication topology, and classification techniques which are categorized under cluster, trust, routing, blockchain, and location-based approaches. First, we briefly discuss the architecture of the IoT ecosystem that consists of three layers namely perception, network, and application layer which support the basic task such as transmission, sensing, and processing. Next, we classify the communication mechanism into different scenarios involved in the various network for the transmission of data in the IoT environment. Then, we investigate the recent approaches for secure communication to overcome certain attacks in IoT and analyze their strength and limitations. Finally, we discuss the security requirements, threats, and vulnerabilities faced by the current IoT system, and numerous open research challenges that are needed to be addressed for the efficient transmission of data as future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar, K.; Kumar, S.; Kaiwartya, O.; Cao, Y.; Lloret, J.; Aslam, N.: Cross-layer energy optimization for IoT environments: technical advances and opportunities. Energies 10(12), 2073 (2017)

    Google Scholar 

  2. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Google Scholar 

  3. Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F.: Internet of things security: a survey. J. Netw. Comput. Appl. 88, 10–28 (2017)

    Google Scholar 

  4. Aazam, M.; St-Hilaire, M.; Lung, C.H.; Lambadaris, I.: PRE-Fog: IoT trace based probabilistic resource estimation at Fog. In: 2016 13th IEEE Annual Consumer Communications and Networking Conference (CCNC), pp. 12–17 (2016)

  5. Kaiwartya, O.; Abdullah, A.H.; Cao, Y.; Altameem, A.; Prasad, M.; Lin, C.T.; Liu, X.: Internet of vehicles: motivation, layered architecture, network model, challenges, and future aspects. IEEE Access 4, 5356–5373 (2016)

    Google Scholar 

  6. Grieco, L.A.; Rizzo, A.; Colucci, S.; Sicari, S.; Piro, G.; Di Paola, D.; Boggia, G.: IoT-aided robotics applications: technological implications, target domains and open issues. Comput. Commun. 54, 32–47 (2014)

    Google Scholar 

  7. Chifor, B.C.; Bica, I.; Patriciu, V.V.; Pop, F.: A security authorization scheme for smart home Internet of Things devices. Future Gener. Comput. Syst. 86, 740–749 (2018)

    Google Scholar 

  8. Aijaz, A.; Aghvami, A.H.: Cognitive machine-to-machine communications for Internet-of-Things: a protocol stack perspective. IEEE Internet Things J. 2(2), 103–112 (2015)

    Google Scholar 

  9. Lin, Y.B.; Lin, Y.W.; Chih, C.Y.; Li, T.Y.; Tai, C.C.; Wang, Y.C.; Hsu, S.C.: EasyConnect: a management system for IoT devices and its applications for interactive design and art. IEEE Internet Things J. 2(6), 551–561 (2015)

    Google Scholar 

  10. Yaqoob, I.; Ahmed, E.; Hashem, I.A.T.; Ahmed, A.I.A.; Gani, A.; Imran, M.; Guizani, M.: Internet of things architecture: recent advances, taxonomy, requirements, and open challenges. IEEE Wirel. Commun. 24(3), 10–16 (2017)

    Google Scholar 

  11. Atzori, L.; Iera, A.; Morabito, G.: Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Netw. 56, 122–140 (2017)

    Google Scholar 

  12. Atzori, L.; Iera, A.; Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    MATH  Google Scholar 

  13. Lee, J.H.; Kim, H.: Security and privacy challenges in the internet of things [security and privacy matters]. IEEE Consum. Electron. Mag. 6(3), 134–136 (2017)

    Google Scholar 

  14. Kamble, A.; Bhutad, S.: Survey on Internet of Things (IoT) security issues and solutions. In: 2018 2nd International Conference on Inventive Systems and Control (ICISC) IEEE, pp. 307–312 (2018)

  15. Ammar, M.; Russello, G.; Crispo, B.: Internet of Things: a survey on the security of IoT frameworks. J. Inf. Secur. Appl. 38, 8–27 (2018)

    Google Scholar 

  16. Hassan, W.H.: Current research on Internet of Things (IoT) security: a survey. Comput. Netw. 148, 283–294 (2019)

    Google Scholar 

  17. Al Salami, S.; Baek, J.; Salah, K.; Damiani, E.: Lightweight encryption for smart home. In: 2016 11th International Conference on Availability, Reliability and Security (ARES) IEEE, pp. 382–388 (2016)

  18. Khan, M.A.; Salah, K.: IoT security: review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 82, 395–411 (2018)

    Google Scholar 

  19. Erol-Kantarci, M.; Mouftah, H.T.: Energy-efficient information and communication infrastructures in the smart grid: a survey on interactions and open issues. IEEE Commun. Surv. Tutor. 17(1), 179–197 (2014)

    Google Scholar 

  20. Musaddiq, A.; Zikria, Y.B.; Hahm, O.; Yu, H.; Bashir, A.K.; Kim, S.W.: A survey on resource management in IoT operating systems. IEEE Access 6, 8459–8482 (2018)

    Google Scholar 

  21. White, G.; Nallur, V.; Clarke, S.: Quality of service approaches in IoT: a systematic mapping. J. Syst. Softw. 132, 186–203 (2017)

    Google Scholar 

  22. Bröring, A.; Schmid, S.; Schindhelm, C.K.; Khelil, A.; Käbisch, S.; Kramer, D.; Teniente, E.: Enabling IoT ecosystems through platform interoperability. IEEE Softw. 34(1), 54–61 (2017)

    Google Scholar 

  23. Lin, H.; Bergmann, N.: IoT privacy and security challenges for smart home environments. Information 7(3), 44 (2016)

    Google Scholar 

  24. Khan, M.A.; Salah, K.: Cloud adoption for e-learning: survey and future challenges. Educ. Inf. Technol. 29, 1–22 (2019)

    Google Scholar 

  25. Zhou, J.; Cao, Z.; Dong, X.; Vasilakos, A.V.: Security and privacy for cloud-based IoT: challenges. IEEE Commun. Mag. 55(1), 26–33 (2017)

    Google Scholar 

  26. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W.: A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)

    Google Scholar 

  27. Subbarao, V.; Srinivas, K.; Pavithr, R.S.: A survey on internet of things based smart, digital green and intelligent campus. In: 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), pp. 1–6. IEEE (2019)

  28. Jing, Q.; Vasilakos, A.V.; Wan, J.; Lu, J.; Qiu, D.: Security of the Internet of Things: perspectives and challenges. Wirel. Netw. 20(8), 2481–2501 (2014)

    Google Scholar 

  29. Borgohain, T.; Kumar, U.; Sanyal, S.: Survey of security and privacy issues of internet of things (2015). arXiv preprint arXiv:1501.02211

  30. Kavun, E.B.; Yalcin, T.: A lightweight implementation of Keccak hash function for radio-frequency identification applications. In: International Workshop on Radio Frequency Identification: Security and Privacy Issues, pp. 258–269 (2010)

  31. Pirbhulal, S.; Zhang, H.; Wu, W.; Mukhopadhyay, S.C.; Zhang, Y.T.: Heartbeats based biometric random binary sequences generation to secure wireless body sensor networks. IEEE Trans. Biomed. Eng. 65(12), 2751–2759 (2018)

    Google Scholar 

  32. Chen, D.; Cheng, Y.; Yang, W.; Hu, J.; Cai, Y.: Physical layer security in cognitive untrusted relay networks. IEEE Access 24(6), 7055–7065 (2017)

    Google Scholar 

  33. Suárez-Albela, M.; Fernández-Caramés, T.; Fraga-Lamas, P.; Castedo, L.: A practical evaluation of a high-security energy-efficient gateway for IoT fog computing applications. Sensors 17(9), 1978 (2017)

    Google Scholar 

  34. Xu, G.; Cao, Y.; Ren, Y.; Li, X.; Feng, Z.: Network security situation awareness based on semantic ontology and user-defined rules for Internet of Things. IEEE Access 5, 21046–21056 (2017)

    Google Scholar 

  35. Batool, K.; Niazi, M.A.: Modeling the internet of things: a hybrid modeling approach using complex networks and agent-based models. Complex Adapt. Syst. Model. 5(1), 4 (2017)

    Google Scholar 

  36. Rashvand, H.F.; Salah, K.; Calero, J.M.; Harn, L.: Distributed security for multi-agent systems–review and applications. IET Inf. Secur. 4(4), 188–201 (2010)

    Google Scholar 

  37. Wazid, M.; Das, A.K.; Vasilakos, A.V.: Authenticated key management protocol for cloud-assisted body area sensor networks. J. Netw. Comput. Appl. 1(123), 112–126 (2018)

    Google Scholar 

  38. Mahmud, M.; Kaiser, M.S.; Rahman, M.M.; Rahman, M.A.; Shabut, A.; Al-Mamun, S.; Hussain, A.: A brain-inspired trust management model to assure security in a cloud based IoT framework for neuroscience applications. Cogn. Comput. 10(5), 864–873 (2018)

    Google Scholar 

  39. El Kafhali, S.; Salah, K.: Efficient and dynamic scaling of fog nodes for IoT devices. Supercomput. 73(12), 5261–5284 (2017)

    Google Scholar 

  40. Akhunzada, A.; Gani, A.; Anuar, N.B.; Abdelaziz, A.; Khan, M.K.; Hayat, A.; Khan, S.U.: Secure and dependable software defined networks. J. Netw. Comput. Appl. 61, 199–221 (2016)

    Google Scholar 

  41. Shi, Y.R.; Hou, T.: Internet of Things key technologies and architectures research in information processing. Appl. Mech. Mater. 347, 2511–2515 (2013)

    Google Scholar 

  42. Yaqoob, I.; Hashem, I.A.T.; Mehmood, Y.; Gani, A.; Mokhtar, S.; Guizani, S.: Enabling communication technologies for smart cities. IEEE Commun. Mag. 55(1), 112–120 (2017)

    Google Scholar 

  43. Valmohammadi, C.: Examining the perception of Iranian organizations on Internet of Things solutions and applications. Ind. Commer. Train. 48(2), 104–108 (2016)

    Google Scholar 

  44. Elhoseny, M.; Ramírez-González, G.; Abu-Elnasr, O.M.; Shawkat, S.A.; Arunkumar, N.; Farouk, A.: Secure medical data transmission model for IoT-based healthcare systems. IEEE Access 6, 20596–20608 (2018)

    Google Scholar 

  45. Hahn, D.A.; Munir, A.; Behzadan, V.: Security and privacy issues in intelligent transportation systems: classification and challenges. IEEE Intell. Transp. Syst. Mag. (2019). https://doi.org/10.1109/MITS.2019.2898973

    Article  Google Scholar 

  46. Qian, Y.; Wu, D.; Bao, W.; Lorenz, P.: The internet of things for smart cities: technologies and applications. IEEE Netw. 33(2), 4–5 (2019)

    Google Scholar 

  47. Panchal, A.C.; Khadse, V.M.; Mahalle, P.N.: Security issues in IIoT: a comprehensive survey of attacks on IIoT and its countermeasures. In: 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN), pp. 124–130 (2018)

  48. Whitmore, A.; Agarwal, A.; Da Xu, L.: The Internet of Things—a survey of topics and trends. Inf. Syst. Front. 17(2), 261–274 (2015)

    Google Scholar 

  49. Xie, L.; Ding, Y.; Yang, H.; Wang, X.: Blockchain-based secure and trustworthy Internet of Things in SDN-enabled 5G-VANETs. IEEE Access 7, 56656–56666 (2019)

    Google Scholar 

  50. Kumai, N.; Kumar, R.; Bajaj, R.: Mobile ad hoc networks and energy efficiency using directional antennas: a review. In: 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1213–1219 (2017)

  51. Singh, R.; Kathuria, K.; Sagar, A.K.: Secure routing protocols for wireless sensor networks. In: 2018 4th International Conference on Computing Communication and Automation (ICCCA), pp. 1–5 (2018)

  52. Chandrasekharan, S.; Gomez, K.; Al-Hourani, A.; Kandeepan, S.; Rasheed, T.; Goratti, L.; Allsopp, S.: Designing and implementing future aerial communication networks. IEEE Commun. Mag. 54(5), 26–34 (2016)

    Google Scholar 

  53. Mathur, S.; Sagari, S.S.; Amin, S.O.; Ravindran, R.; Saha, D.; Seskar, I.; Wang, G.: Demo abstract: CDMA-based IoT services with shared band operation of LTE in 5G. In: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 958–959 (2017)

  54. Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M.: Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 23(5), 60–67 (2016)

    Google Scholar 

  55. Verma, S.; Kawamoto, Y.; Fadlullah, Z.M.; Nishiyama, H.; Kato, N.: A survey on network methodologies for real-time analytics of massive IoT data and open research issues. IEEE Commun. Surv. Tutor. 19(3), 1457–1477 (2017)

    Google Scholar 

  56. Xu, K.; Qu, Y.; Yang, K.: A tutorial on the internet of things: from a heterogeneous network integration perspective. IEEE Netw. 30(2), 102–108 (2016)

    Google Scholar 

  57. Alabady, S.A.; Al-Turjman, F.; Din, S.: A novel security model for cooperative virtual networks in the IoT era. Int. J. Parallel Program. 48(2), 280–295 (2020)

    Google Scholar 

  58. Niu, H.; Zhu, N.; Sun, L.; Vasilakos, A.V.; Sezaki, K.: Security-embedded opportunistic user cooperation with full diversity. Wirel. Netw. 22(5), 1513–1522 (2016)

    Google Scholar 

  59. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Google Scholar 

  60. Bera, S.; Misra, S.; Vasilakos, A.V.: Software-defined networking for internet of things: a survey. IEEE Internet Things J. 4(6), 1994–2008 (2017)

    Google Scholar 

  61. Min, M.; Yang, Z.; Zhang, Y.; Wang, Y.; Li, Z.: Traffic aware multiple slotframes scheduling algorithm in industrial IoT applications using IEEE802. 15.4 e TSCH. In: 2015 IEEE 16th International Conference on Communication Technology (ICCT), pp. 608–614 (2015)

  62. Tawfik, M.; Almadni, A.M.; Alharbi, A.A.: A review: the risks and weakness security on the IoT. IOSR J. Comput. Eng. (IOSR-JCE) 1, 12–17 (2017)

    Google Scholar 

  63. Sain, M.; Kang, Y.J.; Lee, H.J.: Survey on security in Internet of Things: state of the art and challenges. In: 2017 19th International conference on advanced communication technology (ICACT), pp. 699–704 (2017)

  64. Sinha, R.S.; Wei, Y.; Hwang, S.H.: A survey on LPWA technology: LoRa and NB-IoT. Ict Express 3(1), 14–21 (2017)

    Google Scholar 

  65. Kouicem, D.E.; Bouabdallah, A.; Lakhlef, H.: Internet of things security: a top-down survey. Comput. Netw. 141, 199–221 (2018)

    Google Scholar 

  66. Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-Khah, M.; Siano, P.: Iot-based smart cities: a survey. In: 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), pp. 1–6 (2016)

  67. Gope, P.; Hwang, T.: BSN-Care: a secure IoT-based modern healthcare system using body sensor network. IEEE Sens. J. 16(5), 1368–1376 (2015)

    Google Scholar 

  68. Asghar, M.H.; Negi, A.; Mohammadzadeh, N.: Principle application and vision in Internet of Things (IoT). In: International Conference on Computing, Communication and Automation, pp. 427–431 (2015)

  69. Tian, F.: An agri-food supply chain traceability system for China based on RFID and blockchain technology. In: 2016 13th International Conference on Service Systems and Service Management (ICSSSM), pp. 1–6 (2016)

  70. Khattak, H.A.; Shah, M.A.; Khan, S.; Ali, I.; Imran, M.: Perception layer security in Internet of Things. Future Gener. Comput. Syst. 100, 144–164 (2019)

    Google Scholar 

  71. Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J.: A survey of online activity recognition using mobile phones. Sensors 15(1), 2059–2085 (2015)

    Google Scholar 

  72. Botta, A.; De Donato, W.; Persico, V.; Pescapé, A.: Integration of cloud computing and internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)

    Google Scholar 

  73. Chang, J.Y.: A distributed cluster computing energy-efficient routing scheme for internet of things systems. Wirel. Pers. Commun. 82(2), 757–776 (2015)

    Google Scholar 

  74. Preeth, S.S.L.; Dhanalakshmi, R.; Kumar, R.; Shakeel, P.M.: An adaptive fuzzy rule based energy efficient clustering and immune-inspired routing protocol for WSN-assisted IoT system. J. Ambient Intell. Human. Comput. (2018). https://doi.org/10.1007/s12652-018-1154-z

  75. Thangaramya, K.; Kulothungan, K.; Logambigai, R.; Selvi, M.; Ganapathy, S.; Kannan, A.: Energy aware cluster and neuro-fuzzy based routing algorithm for wireless sensor networks in IoT. Comput. Netw. 151, 211–223 (2019)

    Google Scholar 

  76. Dhumane, A.V.; Prasad, R.S.: Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT. Wirel. Netw. 25(1), 399–413 (2019)

    Google Scholar 

  77. Dhumane, A.V.; Prasad, R.S.: Fractional gravitational Grey Wolf optimization to multi-path data transmission in IoT. Wirel. Pers. Commun. 102(1), 411–436 (2018)

    Google Scholar 

  78. Fouladlou, M.; Khademzadeh, A.: An energy efficient clustering algorithm for wireless sensor devices in Internet of Things. In: 2017 Artificial Intelligence and Robotics (IRANOPEN), pp. 39–44 (2017)

  79. Shah, S.B.; Chen, Z.; Yin, F.; Khan, I.U.; Ahmad, N.: Energy and interoperable aware routing for throughput optimization in clustered IoT-wireless sensor networks. Future Gener. Comput. Syst. 81, 372–381 (2018)

    Google Scholar 

  80. Magotra, S.; Kumar, K.: Detection of HELLO flood attack on LEACH protocol. In: 2014 IEEE International Advance Computing Conference (IACC), pp. 193–198 (2014)

  81. Alnasser, A.; Sun, H.: A fuzzy logic trust model for secure routing in smart grid networks. IEEE Access 5, 17896–17903 (2017)

    Google Scholar 

  82. Xu, Q.; Ren, P.; Song, H.; Du, Q.: Security enhancement for IoT communications exposed to eavesdroppers with uncertain locations. IEEE Access 4, 2840–2853 (2016)

    Google Scholar 

  83. Pirbhulal, S.; Zhang, H.; El Alahi, M.; Ghayvat, H.; Mukhopadhyay, S.; Zhang, Y.T.; Wu, W.: A novel secure IoT-based smart home automation system using a wireless sensor network. Sensors 17(1), 69 (2017)

    Google Scholar 

  84. Han, G.; Zhou, L.; Wang, H.; Zhang, W.; Chan, S.: A source location protection protocol based on dynamic routing in WSNs for the social Internet of Things. Future Gener. Comput. Syst. 82, 689–697 (2018)

    Google Scholar 

  85. Han, G.; Wang, H.; Guizani, M.; Chan, S.; Zhang, W.: KCLP: A k-means cluster-based location privacy protection scheme in WSNs for IoT. IEEE Wirel. Commun. 25(6), 84–90 (2018)

    Google Scholar 

  86. Han, G.; Wang, H.; Jiang, J.; Zhang, W.; Chan, S.: CASLP: a confused arc-based source location privacy protection scheme in WSNs for IoT. IEEE Commun. Mag. 56(9), 42–47 (2018)

    Google Scholar 

  87. Gai, K.; Choo, K.K.R.; Qiu, M.; Zhu, L.: Privacy-preserving content-oriented wireless communication in internet-of-things. IEEE Internet Things J. 5(4), 3059–3067 (2018)

    Google Scholar 

  88. Djedjig, N.; Tandjaoui, D.; Medjek, F.: Trust-based RPL for the Internet of Things. In: 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 962–967 (2015)

  89. Suresh, M.; Neema, M.: Hardware implementation of blowfish algorithm for the secure data transmission in Internet of Things. Procedia Technol. 25, 248–255 (2016)

    Google Scholar 

  90. Rani, S.S.; Alzubi, J.A.; Lakshmanaprabu, S.K.; Gupta, D.; Manikandan, R.: Optimal users based secure data transmission on the internet of healthcare things (IoHT) with lightweight block ciphers. Multimedia Tools Appl. 18(3), 1–20 (2019)

    Google Scholar 

  91. Tang, J.; Liu, A.; Zhang, J.; Xiong, N.; Zeng, Z.; Wang, T.: A trust-based secure routing scheme using the traceback approach for energy-harvesting wireless sensor networks. Sensors 18(3), 751 (2018)

    Google Scholar 

  92. Mehta, R.; Parmar, M.M.: Trust based mechanism for securing IoT routing protocol RPL against Wormhole and Grayhole attacks. In: 2018 3rd International Conference for Convergence in Technology (I2CT), pp. 1–6 (2018)

  93. Memos, V.A.; Psannis, K.E.; Ishibashi, Y.; Kim, B.G.; Gupta, B.B.: An efficient algorithm for media-based surveillance system (EAMSuS) in IoT smart city framework. Future Gener. Comput. Syst. 83, 619–628 (2018)

    Google Scholar 

  94. Giuliano, R.; Mazzenga, F.; Neri, A.; Vegni, A.M.: Security access protocols in IoT capillary networks. IEEE Internet Things J. 4(3), 645–657 (2016)

    Google Scholar 

  95. Hatzivasilis, G.; Papaefstathiou, I.; Manifavas, C.: SCOTRES: secure routing for IoT and CPS. IEEE Internet Things J. 4(6), 2129–2141 (2017)

    Google Scholar 

  96. Ali, Z.; Abbas, Z.H.; Li, F.Y.: A stochastic routing algorithm for distributed IoT with unreliable wireless links. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5 (2016)

  97. Senthil, T.; Kannapiran, B.: ECTMRA: energy conserving trustworthy multipath routing algorithm based on cuckoo search algorithm. Wirel. Pers. Commun. 94(4), 2239–2258 (2017)

    Google Scholar 

  98. Jiang, T.; Fang, H.; Wang, H.: Blockchain-based internet of vehicles: distributed network architecture and performance analysis. IEEE Internet Things J. 6(3), 4640–4649 (2018)

    Google Scholar 

  99. Sharma, P.K.; Singh, S.; Jeong, Y.S.; Park, J.H.: Distblocknet: a distributed blockchains-based secure sdn architecture for iot networks. IEEE Commun. Mag. 55(9), 78–85 (2017)

    Google Scholar 

  100. Hammi, M.T.; Hammi, B.; Bellot, P.; Serhrouchni, A.: Bubbles of trust: a decentralized blockchain-based authentication system for IoT. Comput. Secur. 78, 126–142 (2018)

    Google Scholar 

  101. Lee, B.; Lee, J.H.: Blockchain-based secure firmware update for embedded devices in an Internet of Things environment. J. Supercomput. 73(3), 1152–1167 (2017)

    Google Scholar 

  102. Jeon, J.H.; Kim, K.H.; Kim, J.H.: Blockchain based data security enhanced IoT server platform. In: 2018 International Conference on Information Networking (ICOIN), pp. 941–944 (2018)

  103. Salah, K.; Rehman, M.H.; Nizamuddin, N.; Al-Fuqaha, A.: Blockchain for AI: review and open research challenges. IEEE Access 7, 10127–10149 (2019)

    Google Scholar 

  104. Dai, Y.; Xu, D.; Maharjan, S.; Chen, Z.; He, Q.; Zhang, Y.: Blockchain and deep reinforcement learning empowered intelligent 5G beyond. IEEE Netw. 33(3), 10–17 (2019)

    Google Scholar 

  105. Suliman, A.; Husain, Z.; Abououf, M.; Alblooshi, M.; Salah, K.: Monetization of IoT data using smart contracts. IET Netw. 8(1), 32–37 (2018)

    Google Scholar 

  106. Hasan, H.R.; Salah, K.: Blockchain-based proof of delivery of physical assets with single and multiple transporters. IEEE Access 6, 46781–46793 (2018)

    Google Scholar 

  107. Chaer, A.; Khaled, S.; Claudio, L.; Partha, P.R.; Sheltami, T.: Blockchain for 5G: opportunities and challenges, IEEE Globecom 2019, At Waikoloa, HI, USA (2019)

  108. Hasan, H.R.; Salah, K.: Blockchain-based solution for proof of delivery of physical assets. In: International Conference on Blockchain, pp. 139–152. Springer, Cham (2018)

  109. Chen, D.; Yang, W.; Hu, J.; Cai, Y.; Tang, X.: Energy-efficient secure transmission design for the Internet of Things with an untrusted relay. IEEE Access 6, 11862–11870 (2018)

    Google Scholar 

  110. Wang, Y.; Yang, W.; Shang, X.; Hu, J.; Huang, Y.; Cai, Y.: Energy-efficient secure transmission for wireless powered internet of things with multiple power beacons. IEEE Access 6, 75086–75098 (2018)

    Google Scholar 

  111. Chen, J.; Touati, C.; Zhu, Q.: Optimal secure two-layer IoT network design. IEEE Trans. Control Netw. Syst. 7(1), 398–409 (2020)

    Google Scholar 

  112. Li, F.; Shi, Y.; Shinde, A.; Ye, J.; Song, W.Z.: Enhanced cyber-physical security in Internet of Things through energy auditing. IEEE Internet Things J. 6(3), 5224–5231 (2019)

    Google Scholar 

  113. Randhawa, R.H.; Hameed, A.; Mian, A.N.: Energy efficient cross-layer approach for object security of CoAP for IoT devices. Ad Hoc Netw. 92, 101761 (2019)

    Google Scholar 

  114. Fang, W.; Xu, M.; Zhu, C.; Han, W.; Zhang, W.; Rodrigues, J.J.: FETMS: fast and efficient trust management scheme for information-centric networking in Internet of Things. IEEE Access 7, 13476–13485 (2019)

    Google Scholar 

  115. Tao, M.; Wei, W.; Huang, S.: Location-based trustworthy services recommendation in cooperative-communication-enabled Internet of Vehicles. J. Netw. Comput. Appl. 126, 1–11 (2019)

    Google Scholar 

  116. Sciancalepore, S.; Oligeri, G.; Piro, G.; Boggia, G.; Di Pietro, R.: EXCHANge: securing IoT via channel anonymity. Comput. Commun. 134, 14–29 (2019)

    Google Scholar 

  117. Casola, V.; De Benedictis, A.; Riccio, A.; Rivera, D.; Mallouli, W.; de Oca, E.M.: A security monitoring system for internet of things. Internet Things 7, 100080 (2019)

    Google Scholar 

  118. Saeed, M.E.S.; Liu, Q.Y.; Tian, G.; Gao, B.; Li, F.: AKAIoTs: authenticated key agreement for Internet of Things. Wirel. Netw. 25(6), 3081–3101 (2019)

    Google Scholar 

  119. Kang, J.; Xiong, Z.; Niyato, D.; Ye, D.; Kim, D.I.; Zhao, J.: Toward secure blockchain-enabled internet of vehicles: optimizing consensus management using reputation and contract theory. IEEE Trans. Veh. Technol. 68(3), 2906–2920 (2019)

    Google Scholar 

  120. Li, D.; Cai, Z.; Deng, L.; Yao, X.; Wang, H.H.: Information security model of blockchain based on intrusion sensing in the IoT environment. Clust. Comput. 22(1), 451–468 (2019)

    Google Scholar 

  121. Liang, W.; Tang, M.; Long, J.; Peng, X.; Xu, J.; Li, K.C.: A secure fabric blockchain-based data transmission technique for industrial Internet-of-Things. IEEE Trans. Ind. Inform. 15(6), 3582–3592 (2019)

    Google Scholar 

  122. Lyu, C.; Zhang, X.; Liu, Z.; Chi, C.H.: Selective authentication based geographic opportunistic routing in wireless sensor networks for Internet of Things against DoS attacks. IEEE Access 7, 31068–31082 (2019)

    Google Scholar 

  123. Pu, C.: Spam DIS attack against routing protocol in the Internet of Things. In: 2019 International Conference on Computing, Networking and Communications (ICNC), pp. 73–77 (2019)

  124. Liu, G.; Quan, W.; Cheng, N.; Zhang, H.; Yu, S.: Efficient DDoS attacks mitigation for stateful forwarding in Internet of Things. J. Netw. Comput. Appl. 130, 1–13 (2019)

    Google Scholar 

  125. Airehrour, D.; Gutierrez, J.A.; Ray, S.K.: SecTrust-RPL: a secure trust-aware RPL routing protocol for Internet of Things. Future Gener. Comput. Syst. 93, 860–876 (2019)

    Google Scholar 

  126. Alshehri, M.D.; Hussain, F.K.: A fuzzy security protocol for trust management in the internet of things (fuzzy-IoT). Computing 101(7), 791–818 (2019)

    MathSciNet  Google Scholar 

Download references

Funding

There is no funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have participated in writing the manuscript and have revised the final version. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Surya Naryan Mahapatra.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants and/or animals performed by any of the authors.

Informed Consent

There is no informed consent for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, S.N., Singh, B.K. & Kumar, V. A Survey on Secure Transmission in Internet of Things: Taxonomy, Recent Techniques, Research Requirements, and Challenges. Arab J Sci Eng 45, 6211–6240 (2020). https://doi.org/10.1007/s13369-020-04461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04461-2

Keywords

Navigation