Skip to main content
Log in

A New Model and Analysis for Peristalsis of Carreau–Yasuda (CY) Nanofluid Subject to Wall Properties

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Peristaltic movement of non-Newtonian nanofluid obeying Carreau–Yasuda (CY) model across a complaint wall channel is formulated through a different approach. Unlike past researches, we consider the well-known Buongiorno’s model without relying on conventional assumption of constant diffusion coefficients. However, the considered model assumes long wavelength of channel walls compared with the channel width. Lower channel wall is heated by providing convection from hot fluid at temperature Tf. The developed system is coupled and nonlinear which seems difficult to be solved exactly. Hence, numerical computations are made by adopting shooting method-based package NDSolve of MATHEMATICA. A considerable effect of wall slip and rheology on the solution profiles is apparent from the computational results. Moreover, the computed results are aimed at predicting the role of Brownian diffusion and thermophoresis in peristalsis especially when wall elastic effects are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

x, y :

Cartesian coordinates

u, v :

Velocity components

d 1 :

Channel width

a 1 :

Wave amplitude

Bi:

Biot number

D B :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion

B 0 :

Magnetic flux density

C :

Wave speed

M :

Hartmann number

C nf :

Effective heat capacity

K nf :

Effective thermal conductivity

ne :

Number of free electrons

Br:

Brinkman number

Pr:

Prandtl number

Ec:

Eckert number

Re:

Reynolds number

We:

Weissenberg number

T :

Time

L :

Heat transfer coefficient

N b :

Brownian motion parameter

N t :

Thermophoresis parameter

N :

Power law index

T :

Local temperature

C :

Local concentration

E 1 :

Wall tension parameter

E 2 :

Mass characterizing parameter

E 3 :

Wall damping parameter

M :

Hall parameter

\(\mu_{0}\) :

Zero shear rate viscosity

\(\sigma_{\text{nf}}\) :

Effective electrical conductivity

\(\psi\) :

Stream function

\(\delta\) :

Wave number

\(\theta\) :

Non-dimensional temperature

\(\varepsilon\) :

Amplitude ratio

\(\beta\) :

Viscosity ratio parameter

\(\lambda\) :

Wavelength

\(\nu\) :

Kinematic viscosity

\(\dot{\gamma }\) :

Shear rate

\(\mu_{\infty }\) :

Infinite shear rate viscosity

\(\rho_{\text{nf}}\) :

Nanofluid density

\(\beta_{1}\) :

Velocity slip parameter

\(\mu \left( {\dot{\gamma }} \right)\) :

Apparent viscosity

\(\varGamma\) :

Material fluid parameter

\(\phi\) :

Nanoparticle concentration

References

  1. Burns, J.C.; Parkes, T.: Peristaltic motion. J. Fluid Mech. 29, 731–743 (1967)

    Google Scholar 

  2. Fung, Y.C.; Yih, C.S.: Peristaltic transport. J. Appl. Mech. 35, 669–675 (1968)

    MATH  Google Scholar 

  3. Yin, F.; Fung, Y.C.: Peristaltic waves in circular cylindrical tubes. J. Appl. Mech. 36, 579–687 (1969)

    Google Scholar 

  4. Srinivas, S.; Muthuraj, R.; Sakina, J.: A note on the influence of heat and mass transfer on a peristaltic flow of a viscous fluid in a vertical asymmetric channel with wall slip. Chem. Ind. Chem. Eng. Q. 18, 483–493 (2012)

    Google Scholar 

  5. Vajravelu, K.; Sreenadh, S.; Rajanikanth, K.; Lee, C.: Peristaltic transport of a Williamson fluid in asymmetric channels with permeable walls. Nonlinear Anal. Real World Appl. 13, 2804–2822 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Hina, S.; Hayat, T.; Asghar, S.; Hendi, A.A.: Influence of compliant walls on peristaltic motion with heat/mass transfer and chemical reaction. Int. J. Heat Mass Transf. 55, 3386–3394 (2012)

    Google Scholar 

  7. Mekheimer, K.S.; Abdelmaboud, Y.: Simultaneous effects of variable viscosity and thermal conductivity on peristaltic flow in a vertical asymmetric channel. Can. J. Phys. 92, 1541–1555 (2014)

    Google Scholar 

  8. Lachiheb, M.: Effect of coupled radial and axial variability of viscosity on the peristaltic transport of Newtonian fluid. Appl. Math. Comput. 244, 761–771 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Javed, M.; Hayat, T.; Alsaedi, A.: Peristaltic flow of Burgers’ fluid with compliant walls and heat transfer. Appl. Math. Comput. 244, 654–671 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Hina, S.; Mustafa, M.; Hayat, T.; Alotaibi, N.D.: On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties. Appl. Math. Comput. 263, 378–391 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Hina, S.; Mustafa, M.; Hayat, T.; Alsaedi, A.: Peristaltic flow of couple-stress fluid with heat and mass transfer: an application in biomedicine. J. Mech. Med. Biol. (2015). https://doi.org/10.1142/s021951945500426

    Article  Google Scholar 

  12. Gad, N.S.: Effects of hall currents on peristaltic transport with compliant walls. Appl. Math. Comput. 235, 546–554 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Hina, S.; Hayat, T.; Alsaedi, A.: Slip effects on MHD peristaltic motion with heat and mass transfer. Arab. J. Sci. Eng. 39, 539–603 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Abbasi, F.M.; Hayat, T.; Alsaedi, A.: Numerical analysis for MHD peristaltic transport of Carreau–Yasuda fluid in a curved channel with Hall effects. J. Magn. Magn. Mater. 382, 104–110 (2015)

    Google Scholar 

  15. Abbas, M.A.; Bai, Y.Q.; Rashidi, M.M.; Bhatti, M.M.: Application of drug delivery in magnetohydrodynamics peristaltic blood flow of nanofluid in a non-uniform channel. J. Mech. Med. Biol. 16, Article ID 1650052 (2016)

    Google Scholar 

  16. Kothandapani, M.; Prakash, J.; Srinivas, S.: Peristaltic transport of a MHD Carreau fluid in a tapered asymmetric channel with permeable walls. Int. J. Biomath. (2015). https://doi.org/10.1142/s1793524515500540

    Article  MathSciNet  MATH  Google Scholar 

  17. Hussain, Q.; Asghar, S.; Hayat, T.; Alsaedi, A.: Heat transfer analysis in peristaltic flow of MHD Jeffrey fluid with variable thermal conductivity. Appl. Math. Mech. 36, 499–516 (2015)

    MathSciNet  Google Scholar 

  18. Abd-Alla, A.M.; Abo-Dahab, S.M.: Magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel. J. Magn. Magn. Mater. 374, 680–689 (2015)

    Google Scholar 

  19. Tripathi, D.; Bhushan, S.; Beg, O.A.: Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects. Colloids Surf. A Physiochem. Eng. Asp. 506, 32–39 (2016)

    Google Scholar 

  20. Khan, A.A.; Farooq, A.; Vafai, K.: Impact of induced magnetic field on synovial fluid with peristaltic flow in an asymmetric channel. J. Magn. Magn. Mater. 446, 54–67 (2018)

    Google Scholar 

  21. Kothandapani, M.; Pushparaj, V.; Prakash, J.: Effect of magnetic field on peristaltic flow of a fourth grade fluid in a tapered asymmetric channel. J. King Saud Univ. Eng. Sci. 30, 86–95 (2018)

    Google Scholar 

  22. Hina, S.; Yasin, M.: Slip effects on peristaltic flow of magnetohydrodynamics second grade fluid through a flexible channel with heat/mass transfer. J. Therm. Sci. Eng. Appl. 10, Article ID: 051002 (2018)

    Google Scholar 

  23. Hayat, T.; Ahmad, B.; Abbasi, F.M.; Alsaedi, A.: Numerical investigation for peristaltic flow of Carreau–Yasuda magneto-nanofluid with modified Darcy and radiation. J. Therm. Anal. Calorim. 137, 1359–1367 (2019)

    Google Scholar 

  24. Yasmeen, S.; Asghar, S.; Anjum, H.J.; Ehsan, T.: Analysis of Hartmann boundary layer peristaltic flow of Jeffrey fluid: quantitative and qualitative approaches. Commun. Nonlinear Sci. Numer. Simul. 76, 51–65 (2019)

    MathSciNet  Google Scholar 

  25. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. Trans. ASME 128, 240–250 (2006)

    Google Scholar 

  26. Nield, D.A.; Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    MATH  Google Scholar 

  27. Kuznetsov, A.V.; Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Google Scholar 

  28. Nield, D.A.; Kuznetsov, A.V.: The Cheng-Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 54, 374–378 (2011)

    MATH  Google Scholar 

  29. Mustafa, M.; Hina, S.; Hayat, T.; Hendi, A.A.: Influence of wall properties on peristaltic transport of nanofluid: analytic and numerical solutions. Int. J. Heat Mass Transf. 55, 4871–4877 (2012)

    Google Scholar 

  30. Mustafa, M.; Hina, S.; Hayat, T.; Alseadi, A.: Slip effects on the peristaltic motion of nanofluid in a channel with wall properties. J. Heat Transf. Trans. ASME 135, 041701(1-7) (2013)

    Google Scholar 

  31. Tripathi, D.; Bég, O.A.: A study on peristaltic flow of nanofluids: application in drug delivery systems. Int. J. Heat Mass Transf. 70, 61–70 (2014)

    Google Scholar 

  32. Ebaid, A.: Remarks on the homotopy perturbation method for the peristaltic flow of Jeffrey fluid with nano-particles in an asymmetric channel. Comput. Math Appl. 68, 77–85 (2014)

    MATH  Google Scholar 

  33. Aly, E.H.; Ebaid, A.: Exact analytical solution for the peristaltic flow of nanofluids in an asymmetric channel with slip effect of the velocity, temperature and concentration. J. Mech. 30, 411–422 (2014)

    MATH  Google Scholar 

  34. Kothandapani, M.; Prakash, J.: Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel. J. Magn. Magn. Mater. 378, 152–163 (2015)

    Google Scholar 

  35. Kothandapani, M.; Prakash, J.: Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. Int. J. Heat Mass Transf. 81, 234–245 (2015)

    Google Scholar 

  36. Abbasi, F.M.; Hayat, T.; Ahmad, B.: Peristaltic transport of copper-water nanofluid saturating porous medium. Physica E 67, 47–53 (2015)

    Google Scholar 

  37. Abbasi, F.M.; Hayat, T.; Alsaedi, A.: Peristaltic transport of magneto-nanoparticles submerged in water: model for drug delivery system. Physica E 68, 123–132 (2015)

    Google Scholar 

  38. Alvi, N.; Lateef, T.; Hussain, Q.; Asghar, S.: Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles. Res. Phys. 6, 1109–1125 (2016)

    Google Scholar 

  39. Tripathi, D.; Sharma, A.; Beg, O.A.: Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation. Adv. Powder Technol. 29, 639–653 (2018)

    Google Scholar 

  40. Prakash, J.; Sharma, A.; Tripathi, D.: Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J. Mol. Liq. 249, 843–855 (2018)

    Google Scholar 

  41. Hayat, T.; Akram, J.; Alsaedi, A.; Zahir, H.: Endoscopy effect in mixed convective peristalsis of Powell-Eyring nanofluid. J. Mol. Liq. 254, 47–54 (2018)

    Google Scholar 

  42. Hayat, T.; Rafiq, M.; Ahmad, B.; Asghar, S.: Entropy generation analysis for peristaltic flow of nanoparticles in a rotating frame. Int. J. Heat Mass Transf. 108, 1775–1786 (2017)

    Google Scholar 

  43. Abbasi, F.M.; Shanakhat, I.; Shehzad, S.A.: Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J. Magn. Magn. Mater. 474, 434–441 (2019)

    Google Scholar 

  44. Ibrahim, M.G.; Hasona, W.M.; ElSheikhipy, A.A.: Concentration-dependent viscosity and thermal radiation effects on MHD peristaltic motion of synovial nanofluid: applications to rheumatoid arthritis treatment. Comput. Meth. Prog. Biomed. 179, 39–52 (2019)

    Google Scholar 

  45. Saad, K.M.; Gómez-Aguilar, J.M.: Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel. Physica A: Stat. Mech. Appl. 509, 703–716 (2018)

    MathSciNet  Google Scholar 

  46. Gómez-Aguilar, J.F.; Yépez-Martínez, H.; Escobar-Jiménez, R.F.; Olivares-Peregrino, V.H.; Reyes, J.M.; Sosa, I.O.: Series solution for the time-fractional coupled mKdV equation using the homotopy analysis method. Math. Probl. Eng. 2016, Article ID 7047126 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Gómez-Aguilar, J.F.; Atangana, A.: Fractional Hunter–Saxton equation involving partial operators with bi-order in Riemann–Liouville and Liouville–Caputo sense. Eur. Phys. J. Plus 132, Article Number: 100 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayani, S.M., Hina, S. & Mustafa, M. A New Model and Analysis for Peristalsis of Carreau–Yasuda (CY) Nanofluid Subject to Wall Properties. Arab J Sci Eng 45, 5179–5190 (2020). https://doi.org/10.1007/s13369-020-04359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04359-z

Keywords

Navigation