Skip to main content
Log in

Spectroscopic (Vibrational and NMR) Characterizations and Molecular Docking Analysis of Zn(II), Cd(II) and Hg(II) Complexes with Alkyl–Aryl Dithiocarbamates

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To determine the structure of mercury, cadmium and zinc complexes of ethyl–phenyl and butyl–phenyl dithiocarbamates and their geometric parameters (bond length and angles), IR and NMR spectroscopes, electrical (HOMO and LUMO) properties, Mulliken atomic charges and molecular electrostatic potential (MEP) surfaces have been theoretically calculated utilizing the Gaussian 09 software. Computed theoretical parameters of metal complexes have also been compared with the experimental parameters. All of the calculations performed in the Gaussian 09 software have been fulfilled in the LanL2DZ set with the density functional theory (DFT/B3LYP and DFT/HSEH1PBE) method. Moreover, DNA interactions have been viewed employing the molecular docking analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hogarth, G.: Transition metal dithiocarbamates. Prog. Inorg. Chem. 53, 71 (2005). https://doi.org/10.1002/0471725587.ch2

    Article  Google Scholar 

  2. Ivanov, A.V.; Rodyna, T.; Antzutkin, O.N.: Structural organisation of [Ni(II)–Me(II)–Dtc] (Me = Zn, Cd, Hg) dithiocarbamate complexes: ESR 13C and 15N CP/MAS NMR studies. Polyhedron 17, 3101–3109 (1998)

    Article  Google Scholar 

  3. Sagdinc, S.; Pir, H.: Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu(II) and Hg(II) complexes. Spectrochim. Acta Part A 73, 181–194 (2009). https://doi.org/10.1016/j.saa.2009.02.022

    Article  Google Scholar 

  4. Al Hamouz, O.C.S.: New phenol–glycol cross-linked polymers for efficient removal of mercury from aqueous solutions. Arab. J. Sci. Eng. 43, 211–219 (2018). https://doi.org/10.1007/s13369-017-2847-x

    Article  Google Scholar 

  5. Deeming, A.J.; Forth, C.S.; Hogarth, G.: Synthesis and crystal structure of [Ru8(l5-S)2(l4-S)(l3-S)(l-CNMe2)2(l-CO)(CO)15] formed via the double sulphur–carbon bond cleavage of dithiocarbamate ligands. J. Organomet. Chem. 692, 4000–4004 (2007). https://doi.org/10.1016/j.jorganchem.2007.05.044

    Article  Google Scholar 

  6. Samara, C.D.; Tsotsou, G.; Ekateriniadou, L.V.; Kotsarris, A.H.; Raptopoulou, C.P.; Terzis, A.; Kyriakidis, D.A.; Kessisoglou, D.P.: Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions. J. Inorg. Biochem. 71, 171–179 (1998). https://doi.org/10.1016/s0162-0134(98)10051-x

    Article  Google Scholar 

  7. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.J.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.: Gaussian, Inc., Wallingford CT Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford (2009)

    Google Scholar 

  8. Dennington, R.; Keith, T.; Millam, J.: GaussView, version 5. Semichem Inc., Shawnee Mission (2009)

    Google Scholar 

  9. Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  Google Scholar 

  10. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  11. Heyd, J.; Scuseria, G.: Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 121, 1187 (2004). https://doi.org/10.1063/1.1760074

    Article  Google Scholar 

  12. Heyd, J.; Scuseria, G.E.: Assessment and validation of a screened Coulomb hybrid density functional. J. Chem. Phys. 120, 7274 (2004). https://doi.org/10.1063/1.1668634

    Article  Google Scholar 

  13. Heyd, J.; Peralta, J.E.; Scuseria, G.E.; Martin, R.L.: Energy band gaps and lattice parameters evaluated with the Heyd–Scuseria–Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005). https://doi.org/10.1063/1.2085170

    Article  Google Scholar 

  14. Heyd, J.; Scuseria, G.E.; Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 124, 219906 (2006). https://doi.org/10.1063/1.2204597

    Article  Google Scholar 

  15. Hay, P.J.; Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270 (1985). https://doi.org/10.1063/1.448799

    Article  Google Scholar 

  16. Wadt, W.R.; Hay, P.J.: Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284 (1985). https://doi.org/10.1063/1.448800

    Article  Google Scholar 

  17. Hay, P.J.; Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299 (1985). https://doi.org/10.1063/1.448800

    Article  Google Scholar 

  18. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009). https://doi.org/10.1002/jcc.21256

    Article  Google Scholar 

  19. Onwudiwe, D.C.; Ajibade, P.A.: Synthesis and characterization of Zn(II), Cd(II), and Hg(II) alkyl-aryl dithiocarbamate: X-ray crystal structure of [(C6H5N(et)CS2)Hg(C6H5N(butyl)CS2)]. Synth. React. Inorg. Met. Org. Nano Met. Chem. 40, 279–284 (2010). https://doi.org/10.1080/15533171003766717

    Article  Google Scholar 

  20. Pir, H.; Günay, N.; Avcı, D.; Tamer, Ö.; Tarcan, E.; Atalay, Y.: Theoretical investigation of 6-(3,3,4,4,4-pentafluoro-2-hydroxy-1-butenyl)-2,4-dimethoxy-pyrimidine molecule. Arab. J. Sci. Eng. 39(7), 5799–5814 (2014). https://doi.org/10.1007/s13369-014-1131-6

    Article  Google Scholar 

  21. Pearson, R.: Absolute electronegativity and hardness: applications to organic chemistry. J. Org. Chem. 54, 1423–1430 (1989)

    Article  Google Scholar 

  22. Mulliken, R.S.: Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 23, 833–1840 (1955). https://doi.org/10.1063/1.1740588

    Article  Google Scholar 

  23. Cramer, J.C.: Essentials of Computational Chemistry. Theory and Models, vol. 596. Wiley, New York (2002)

    Google Scholar 

  24. Lipkowitz, K.B.; Boyd, D.B.: Successes of Computer-Assisted Molecular Design, Reviews in Computational Chemistry, vol. 45. Wiley, New York (1990)

    Google Scholar 

  25. Morris, G.M.; Goodsell, D.S.; Pique, M.E.; Lindstrom, W.; Huey, R.; Forli, S.; Hart, W.E.; Halliday, S.; Belew, R.; Olson, A.J.: User Guide AutoDock Version 4.2. Automated Docking of Flexible Ligands to Flexible Receptors (2010). http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide/AutoDock4.2_UserGuide.pdf. Accessed 11 Oct 2010

  26. Alam, M.; Kim, Y.; Park, S.: Quantum chemical calculations, spectroscopic studies and biological activity of organic–inorganic hybrid compound (2,2-dimethylpropane-1,3-diammonium) tetrachlorozincate(II). Arab. J. Sci. Eng. 44, 631–645 (2019). https://doi.org/10.1007/s13369-018-3573-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hacer Gümüş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gümüş, H. Spectroscopic (Vibrational and NMR) Characterizations and Molecular Docking Analysis of Zn(II), Cd(II) and Hg(II) Complexes with Alkyl–Aryl Dithiocarbamates. Arab J Sci Eng 45, 4929–4937 (2020). https://doi.org/10.1007/s13369-020-04358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04358-0

Keywords

Navigation