Skip to main content
Log in

Rheological and Mechanical Properties of Heavy Density Concrete Including Barite Powder

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Heavy weight concretes (HWCs) or heavy density concretes are commonly used for radiation shielding in nuclear plant to ensure protection against X-rays and Gamma rays. It can also be required in other structures where a large mass is needed. This experimental study was effected to design a HWC, which can be used in bentonite-bored piles concreting in order to remove as much as possible the amount of mud that resides in the pile. In this study, barite is used as fine aggregate mixed with Portland cement to design HWC. Different barite concrete mixes were designed, where barite is used once as an addition while maintaining constant the amount of cement (400 kg/m3) and as a substituent, with different percentage (38, 46, 53 and 57%) to reach different concrete densities. The effect of barite on rheological, heat hydration and mechanical behavior of concrete was investigated. The use of barite as an addition leads to an increase in viscosity and yield stress of concrete; however, when barite is used as a cement substituent, a viscosity decrease is recorded. Barite concrete has shown a lower heat of hydration generation in comparison with a standard mix, which is correlated with compressive strength results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hassan beige, A.; Price, L.; Lin, E.: Emerging energy-efficiency and CO2 emission reduction technologies for cement and concrete production: a technical review. Renew. Sustain. Energy Rev. 16(8), 6220–6238 (2012)

    Google Scholar 

  2. Imbabi, S.M.; Carrigan, C.; McKenna, S.: Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 1(2), 194–216 (2012)

    Google Scholar 

  3. Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H.: Sustainable cement production present and future. Cem. Concr. Res. 41(7), 642–650 (2011)

    Google Scholar 

  4. Boukhelkhal, D.; Boukendakdji, O.; Kenai, S.; Kadri, E.: Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC. Adv. Concr. Constr. 6(1), 69–85 (2018)

    Google Scholar 

  5. Velay-Lizancos, M.; Martinez-Lage, I.; Vazquez-Burgo, P.: The effect of recycled aggregates on the accuracy of the maturity method on vibrated and self-compacting concretes. Arch. Civ. Mech. Eng. 19(2), 311–321 (2019)

    Google Scholar 

  6. Nawaz, W.; Abdalla, J.A.; Hawileh, R.A.; Alajmani, H.S.; Abuzayed, I.H.; Ataya, H.; Mohamed, H.A.: Experimental study on the shear strength of reinforced concrete beams cast with Lava lightweight aggregates. Arch. Civ. Mech. Eng. 19(4), 981–996 (2019)

    Google Scholar 

  7. Yahiaoui, W.; Kenai, S.; Menadi, B.; Kadri, E.H.: Durability of self-compacted concrete containing slag in hot climate. Adv. Concr. Constr. 5(3), 271–288 (2017)

    Google Scholar 

  8. Ling, T.C.; Poon, C.S.: High temperatures properties of barite concrete with cathode ray tube funnel glass. Fire Mater. 38(2), 279–289 (2014)

    Google Scholar 

  9. Kharita, M.H.; Takeyeddin, M.; Alnassar, M.; Yousef, S.: Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics. Prog. Nucl. Energy 50(1), 33–36 (2008)

    Google Scholar 

  10. Amritphale, S.; Anshul, A.; Chandra, N.; Ramakrishnan, N.: Development of celsian ceramics from fly ash useful for X-ray radiation-shielding application. J. Eur. Ceram. Soc. 27(16), 4639–4647 (2007)

    Google Scholar 

  11. Akkurt, I.; Akyıldırım, H.; Mavi, B.; Kilincarslan, S.; Basyigit, C.: Gamma-ray shielding properties of concrete including barite at different energies. Prog. Nucl. Energy 52(7), 620–623 (2010)

    Google Scholar 

  12. Gencel, O.; Brostow, W.; Ozel, C.; Filiz, M.: An investigation on the concrete properties containing colemanite. Int. J. Phys. Sci. 5(3), 216–225 (2010)

    Google Scholar 

  13. Gencel, O.: Physical and mechanical properties of concrete containing hematite as aggregates. Sci. Eng. Compos. Mater. 18(3), 191–199 (2011)

    Google Scholar 

  14. Gencel, O.; Bozkurt, A.; Kam, E.; Korkut, T.: Determining the gamma and neutron shielding characteristics of concretes containing different hematite proportions. Ann. Nucl. Energy 38(12), 2719–2723 (2011)

    Google Scholar 

  15. Ouda, A.S.: Development of high-performance heavy density concrete using different aggregates for gamma ray shielding. Prog. Nucl. Energy 79, 48–55 (2015)

    Google Scholar 

  16. Suresh, A.; Abraham, R.: Experimental study on heavy weight concrete using hematite and laterite as coarse aggregate. Int. J. Eng. Trends Technol. 28(4), 171–175 (2015)

    Google Scholar 

  17. Nambiar, S.; Yeow, J.T.W.: Polymer–composite materials for radiation protection. ACS Appl. Mater. Interfaces. 4(11), 5717–5726 (2012)

    Google Scholar 

  18. Özen, S.; Şengül, C.; Erenoğlu, T.; Çolak, U.; Reyhancan, I.; Taşdemı̇r, M.: Properties of heavyweight concrete for structural and radiation shielding purposes. Arabian J. Sci. Eng. 41(4), 1573–1584 (2016)

    Google Scholar 

  19. Bauchkar, S.D.; Chore, H.S.: Experimental studies on rheological properties of smart dynamic concrete. Adv. Concr. Constr. 5(3), 183–199 (2017)

    Google Scholar 

  20. Skripkiūnas, G.; Daukšys, M.: Dilatancy of cement slurries with chemical admixtures. J. Civ. Eng. Manag. 10(3), 227–233 (2004)

    Google Scholar 

  21. Wallevik, O.H.; Wallevik, J.E.: Rheology as a tool in concrete science: the use of rheographs and workability boxes. Cem. Concr. Res. 41, 1279–1288 (2011)

    Google Scholar 

  22. Fares, G.: Effect of slump cone orientation on the slump flow time (T50) and stability of sustainable self-compacting concrete containing limestone filler. Constr. Build. Mater. 77, 145–153 (2015)

    Google Scholar 

  23. Schwartzentruber, A.; Catherine, C.: Method of concrete equivalent mortar (CEM)—a new tool to design concrete containing admixture. Mater. Struct. 33(232), 475–482 (2000)

    Google Scholar 

  24. Skalny, J.P., Gebauer, J., Odler, I.: Materials science of concrete special volume: calcium hydroxide in concrete (workshop on the role of calcium hydroxide in concrete). In: Proceedings: the American Ceramic Society Florida, pp. 59–72 (2001)

  25. Kaci, A.; Chaouche, M.; Andréani, P.A.; Brossas, H.: Rheological behavior of render mortars. Appl. Rheol. 19(1), 13794-1–13794-2 (2009)

    Google Scholar 

  26. Ferraris, C.F.; Brower, L.E.; Beaupre, D.; Wallevik, J.E.: Comparison of Concrete Rheometers: International Tests at MB (Cleveland, OH, USA), NIST: NISTIR 7154, Gaithersburg, (2004)

  27. Maadani, O.; Chidiac, S.E.; Razaqpur, G.; Mailvaganam, N.P.: Controlling the quality of fresh concrete—a new approach. Mag. Concr. Res. 52(2), 353–363 (2000)

    Google Scholar 

  28. Gołaszewski, J.: Influence of viscosity enhancing agent on rheology and compressive strength of super plasticized mortars. J. Civ. Eng. Manag. 15(2), 181–188 (2009)

    Google Scholar 

  29. Golaszewski, J.; Szwabowski, J.: Influence of superplasticizers on rheological behavior of fresh cement mortars. Cem. Concr. Res. 34, 235–248 (2003)

    Google Scholar 

  30. Wallevik, O.H.; Feys, D.; Wallevik, J.E.; Khayat, K.H.: Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cem. Concr. Res. 78, 100–109 (2015)

    Google Scholar 

  31. Jang, K.P.; Kim, J.W.; Choi, M.S.; Kwon, S.H.: A new method to estimate rheological properties of lubricating layer for prediction of concrete pumping. Adv. Concr. Constr. 6(5), 465–483 (2018)

    Google Scholar 

  32. Güneyisi, E.; Gesoglu, M.; Naji, N.; İpek, S.: Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel–Bulkley and modified Bingham models. Arch. Civ. Mech. Eng. 16(1), 9–19 (2016)

    Google Scholar 

  33. Estellé, P.; Lanos, C.; Perrot, A.: Processing the Couette viscometry data using a Bingham approximation in shear rate calculation. J. Non Newton. Fluid Mech. 154(1), 31–38 (2008)

    MATH  Google Scholar 

  34. Soualhi, H.; Kadri, E.H.; Ngo, T.T.; Bouvet, A.; Cussigh, F.; Benabed, B.: Rheology of ordinary and low-impact environmental concretes. J. Adhes. Sci. Technol. 29(20), 2160–2175 (2015)

    Google Scholar 

  35. Kabagire, D.; Diederich, P.; Yahia, A.: New insight into the equivalent concrete mortar approach for self-consolidating concrete. J. Sustain. Cem.-Based Mater. 4, 34–37 (2015)

    Google Scholar 

  36. Soualhi, H.; Kadri, E.H.; Ngo, T.T.; Bouvet, A.; Cussigh, F.; Kenai, S.: A vane rheometer for fresh mortar: development and validation. Appl. Rheol. 24, 22594 (2014)

    Google Scholar 

  37. Kadri, E.H.; Duval, R.; Aggoun, S.; Kenai, S.: Silica fume effect on the hydration heat and compressive strength of high performance. ACI Mater. J. 106, 107–113 (2009)

    Google Scholar 

  38. Saidani, K.; Ajam, L.; Ben Ouezdou, M.: Barite Powder as Sand substitution in concrete: effect on some mechanical properties. Constr. Build. Mater. 95(2015), 287–295 (2009)

    Google Scholar 

  39. Lekkam, M.; Benmounah, A.; Kadri, E.H.; Soualhi, H.; Kaci, A.: Influence of saturated activated carbon on the rheological and mechanical properties of cementitious materials. Constr. Build. Mater. 198, 411–422 (2019)

    Google Scholar 

  40. Soualhi, H.; Kadri, E.H.; Ngo, T.T.; Bouvet, A.; Cussigh, F.; Tahar, Z.E.: Design of portable rheometer with new vane geometry to estimate concrete viscosity. J. Civ. Eng. Manag. 23(3), 347–355 (2017)

    Google Scholar 

  41. Wallevik, J.E.: Relationship between the Bingham parameters and slump. Cem. Concr. Res. 36, 1214–1221 (2006)

    Google Scholar 

  42. Sedran, T.: Rheology and Rheometry of Concrete. An Application to Self-Compacting Concrete, Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, Paris. 244(1999)

  43. De Larrard, F.; Sedran, T.: Mixture proportioning of high-performance concrete. Cem. Concr. Res. 32, 1699–1704 (2002)

    Google Scholar 

  44. Toutou, Z.; Lanos, C.; Mélinge, Y.; Roussel, N.: Modèle de viscosité multi-échelle: de la pâte de ciment au micro-béton. Rhéologie 5, 1–9 (2004)

    Google Scholar 

  45. Yokoyama, S.; Arisawa, R.; Hisyamudin, M.N.N.; Murakami, K.; Maegawa, A.; Izaki, M.: Applicability of carbonated electric arc furnace slag to mortar. J. Phys. 352, 012049 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Bouali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouali, E., Ayadi, A., Kadri, EH. et al. Rheological and Mechanical Properties of Heavy Density Concrete Including Barite Powder. Arab J Sci Eng 45, 3999–4011 (2020). https://doi.org/10.1007/s13369-019-04331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04331-6

Keywords

Navigation