New Green Adsorbent for Capturing Carbon Dioxide by Choline Chloride:Urea-Confined Nanoporous Silica

Abstract

Green nanocomposite adsorbent based on nanoporous silica (NS) and deep eutectic solvent (DES) mixture of choline chloride–urea (ChCl:U) was synthesized as an alternative for carbon dioxide (CO2) adsorption. The nanocomposite adsorbent was prepared by sol–gel technique with the variations of ChCl:U (mole ratio 1:2) content in NS at 5–15% (w/w). Fourier transform infrared attenuated total reflectance (ATR-FTIR) results revealed the successful confinement of ChCl:U into NS from the presence of C=O carbonyl stretching, N–H scissoring bending, CH2 bending and C–N stretching peaks. The peaks intensity increased with increasing weight percentage of confined ChCl:U. In contrast, thermogravimetric analysis (TGA) showed decrement of thermal stability of the adsorbent when ChCl:U was confined into NS. The nitrogen physisorption demonstrated a decrease in specific surface areas of the sorbents with increasing ChCl:U weight percentage due to the transformation of micropores to mesopores. The CO2 adsorption capacity was found to be reduced when the weight percentage of ChCl:U was increased. The optimum adsorption capacity of 23.0 mg/g was achieved by 10% ChCl:U/NS sample. The mechanism of the adsorption was deduced from the ATR-FTIR and XPS spectra for 10%CuCl:U/NS showing that physisorption and chemisorption occurred during CO2 adsorption with the presence of carbamate ion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Morreale, B.; Shi, F.: Novel materials for carbon dioxide mitigation technology. Elsevier (2015)

  2. 2.

    Mello, M.R.; Phanon, D.; Silveira, G.Q.; Llewellyn, P.L.; Ronconi, C.M.: Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mater. 143, 174–179 (2011)

    Article  Google Scholar 

  3. 3.

    Hong, S.-M.; Jang, E.; Dysart, A.D.; Pol, V.G.; Lee, K.B.: CO2 capture in the sustainable wheat-derived activated microporous carbon compartments. Sci. Rep. 6, 34590 (2016)

    Article  Google Scholar 

  4. 4.

    Garcia, G.; Aparicio, S.; Ullah, R.; Atilhan, M.: Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29, 2616–2644 (2015)

    Article  Google Scholar 

  5. 5.

    Hanamertani, A.S.; Pilus, R.M.; Manan, N.A.; Ahmed, S.; Awang, M.: Ionic liquid application in surfactant foam stabilization for gas mobility control. Energy Fuels 32, 6545–6556 (2018)

    Article  Google Scholar 

  6. 6.

    Tenhunen, T.-M.; Lewandowska, A.E.; Orelma, H.; Johansson, L.-S.; Virtanen, T.; Harlin, A.; Österberg, M.; Eichhorn, S.J.; Tammelin, T.: Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea. Cellulose 25, 137–150 (2018)

    Article  Google Scholar 

  7. 7.

    Liu, P.; Hao, J.-W.; Mo, L.-P.; Zhang, Z.-H.: Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv. 5, 48675–48704 (2015)

    Article  Google Scholar 

  8. 8.

    Leron, R.B.; Caparanga, A.; Li, M.-H.: Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T = 303.15–343.15 K and moderate pressures. J. Taiwan Inst. Chem. Eng. 44, 879–885 (2013)

    Article  Google Scholar 

  9. 9.

    Leron, R.B.; Li, M.-H.: Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent. Thermochim. Acta 551, 14–19 (2013)

    Article  Google Scholar 

  10. 10.

    Li, X.; Hou, M.; Han, B.; Wang, X.; Zou, L.: Solubility of CO2 in a choline chloride + urea eutectic mixture. J. Chem. Eng. Data 53, 548–550 (2008)

    Article  Google Scholar 

  11. 11.

    Serrano, M.C.; Gutiérrez, M.C.; Jiménez, R.; Ferrer, M.L.; del Monte, F.: Synthesis of novel lidocaine-releasing poly (diol-co-citrate) elastomers by using deep eutectic solvents. Chem. Commun. 48, 579–581 (2012)

    Article  Google Scholar 

  12. 12.

    Abbott, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V.: Preparation of novel, moisture-stable, lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun. 2010–2011 (2001)

  13. 13.

    Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C.: Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain. Chem. Eng. 2, 1063–1071 (2014)

    Article  Google Scholar 

  14. 14.

    Zhang, Y.; Ji, X.; Lu, X.: Choline-Based deep eutectic solvents for mitigating carbon dioxide Emissions, Novel Materials for Carbon Dioxide Mitigation Technology, Elsevier B.V. 87–116 (2015)

  15. 15.

    Ashworth, C.R.; Matthews, R.P.; Welton, T.; Hunt, P.A.: Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent. Phys. Chem. Chem. Phys. 8(27), 18145–18160 (2016)

    Article  Google Scholar 

  16. 16.

    Migliorati, V.; Sessa, F.; D’Angelo, P.: Deep eutectic solvents: a structural point of view on the role of the cation. Chem. Phys. Lett. X 2, 100001 (2018)

    Google Scholar 

  17. 17.

    Perkins, S.L.; Painter, P.; Colina, C.M.: Experimental and computational studies of choline chloride-based deep eutectic solvents. J. Chem. Eng. Data 59(11), 3652–3662 (2014)

    Article  Google Scholar 

  18. 18.

    Sarmad, S.; Xie, Y.; Mikkola, J.-P.; Ji, X.: Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J. Chem. 41, 290–301 (2017)

    Article  Google Scholar 

  19. 19.

    Daniel-David, D.; Guerton, F.; Dicharry, C.; Torré, J.-P.; Broseta, D.: Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: influence of pressure, temperature, gas composition and water-soluble surfactants. Chem. Eng. Sci. 132, 118–127 (2015)

    Article  Google Scholar 

  20. 20.

    Leron, R.B.; Li, M.-H.: Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures. J. Chem. Thermodyn. 57, 131–136 (2013)

    Article  Google Scholar 

  21. 21.

    Ma, C.; Sarmad, S.; Mikkola, J.P.; Ji, X.: Development of low-cost deep eutectic solvents for CO2 capture. Energy Procedia 142, 3320–3325 (2017)

    Article  Google Scholar 

  22. 22.

    Trivedi, T.J.; Lee, J.H.; Lee, H.J.; Jeong, Y.K.; Choi, J.W.: Deep eutectic solvents as attractive media for CO2 capture. Green Chem. 18, 2834–2842 (2016)

    Article  Google Scholar 

  23. 23.

    Bhattacharyya, S.; Filippov, A.; Shah, F.U.: High CO2 absorption capacity by chemisorption at cations and anions in choline-based ionic liquids. Phys. Chem. Chem. Phys. 19, 31216–31226 (2017)

    Article  Google Scholar 

  24. 24.

    Ruckart, K.N.; O’Brien, R.A.; Woodard, S.M.; West, K.N.; Glover, T.G.: Porous solids impregnated with task-specific ionic liquids as composite sorbents. J. Phys. Chem. C 119, 20681–20697 (2015)

    Article  Google Scholar 

  25. 25.

    Du, Y.; Du, Z.; Zou, W.; Li, H.; Mi, J.; Zhang, C.: Carbon dioxide adsorbent based on rich amines loaded nano-silica. J. Colloid Interface Sci. 409, 123–128 (2013)

    Article  Google Scholar 

  26. 26.

    Abdullah, N.A.; Tahiruddin, N.S.M.; Othaman, R.: Effects of silica content on the formation and morphology of ENR/PVC/Silica composites beads. In: AIP Conference Proceedings, p. 40005. AIP Publishing (2017)

  27. 27.

    Jon, N.; Abdullah, I.; Othaman, R.: Effects of silica on the formation of epoxidised natural rubber/polyvinyl chloride membrane. Sains Malaysiana 42, 469–473 (2013)

    Google Scholar 

  28. 28.

    Nor, F.M.; Karim, N.H.A.; Abdullah, I.; Othaman, R.: Permeability of carbon dioxide and nitrogen gases through SiO2 and MgO incorporated ENR/PVC membranes. J. Elastomers Plast. 48, 483–498 (2016)

    Article  Google Scholar 

  29. 29.

    Jon, N.; Samad, N.A.; Abdullah, N.A.; Abdullah, I.; Othaman, R.: Influence of silica addition on the properties of epoxidised natural rubber/polyvinyl chloride composite membrane. J. Appl. Polym. Sci. 129, 2789–2795 (2013)

    Article  Google Scholar 

  30. 30.

    Mohamed, M.: Effect of molecular weight on the properties of liquid epoxidised natural rubber acrylate (LENRA)/silica hybrid composites. Sains Malaysiana 40, 743–748 (2011)

    Google Scholar 

  31. 31.

    Zulfiqar, U.; Subhani, T.; Husain, S.W.: Synthesis of silica nanoparticles from sodium silicate under alkaline conditions. J. Sol–Gel. Sci. Technol. 77, 753–758 (2016)

    Article  Google Scholar 

  32. 32.

    Yu, B.; Cong, H.; Zhao, X.S.; Chen, Z.: Carbon dioxide capture by dendrimer-modified silica nanoparticles. Adsorpt. Sci. Technol. 29, 781–788 (2011)

    Article  Google Scholar 

  33. 33.

    Jiao, J.; Cao, J.; Xia, Y.; Zhao, L.: Improvement of adsorbent materials for CO2 capture by amine functionalized mesoporous silica with worm-hole framework structure. Chem. Eng. J. 306, 9–16 (2016)

    Article  Google Scholar 

  34. 34.

    Ren, J.; Li, Z.; Chen, Y.; Yang, Z.; Lu, X.: Supported ionic liquid sorbents for CO2 capture from simulated flue-gas. Chin. J. Chem. Eng. 26, 2377–2384 (2018)

    Article  Google Scholar 

  35. 35.

    Zulkurnai, N.Z.; Ali, U.F.M.; Ibrahim, N.; Manan, N.S.A.: Carbon dioxide (CO2) adsorption by activated carbon functionalized with deep eutectic solvent (DES). In: IOP Conference Series: Materials Science and Engineering, p. 12001. IOP Publishing (2017)

  36. 36.

    Creamer, A.E.; Gao, B.: Carbon Dioxide Capture: an Effective Way to Combat Global Warming. Springer (2015)

  37. 37.

    Shi, F.; Zhang, Q.; Li, D.; Deng, Y.: Silica-gel-confined ionic liquids: a new attempt for the development of supported nanoliquid catalysis. Chem. Eur. J. 11, 5279–5288 (2005)

    Article  Google Scholar 

  38. 38.

    Zhou, Y.; Schattka, J.H.; Antonietti, M.: Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol–gel nanocasting technique. Nano Lett. 4, 477–481 (2004)

    Article  Google Scholar 

  39. 39.

    Marwani, H.M.; Alsafrani, A.E.: New solid phase extractor based on ionic liquid functionalized silica gel surface for selective separation and determination of lanthanum. J. Anal. Sci. Technol. 4, 1–13 (2013)

    Article  Google Scholar 

  40. 40.

    Vafaeezadeh, M.; Fattahi, A.: Interaction of ionic liquids with the surface of silica gel using nanocluster approach: a combined density functional theory and experimental study. J. Phys. Org. Chem. 27, 163–167 (2014)

    Article  Google Scholar 

  41. 41.

    Haider, M.B.; Jha, D.; Marriyappan Sivagnanam, B.; Kumar, R.: Thermodynamic and kinetic studies of CO2 capture by glycol and amine-based deep eutectic solvents. J. Chem. Eng. Data 68, 2671–2680 (2018)

    Article  Google Scholar 

  42. 42.

    Hayyan, M.; Abo-Hamad, A.; AlSaadi, M.A.; Hashim, M.A.: Functionalization of graphene using deep eutectic solvents. Nanoscale Res. Lett. 10, 324 (2015)

    Article  Google Scholar 

  43. 43.

    Tang, B.; Park, H.E.; Row, K.H.: Preparation of chlorocholine chloride/urea deep eutectic solvent-modified silica and an examination of the ion exchange properties of modified silica as a Lewis adduct. Anal. Bioanal. Chem. 406, 4309–4313 (2014)

    Article  Google Scholar 

  44. 44.

    Schaber, P.M.; Colson, J.; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J.: Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 424, 131–142 (2004)

    Article  Google Scholar 

  45. 45.

    Chemat, F.; Anjum, H.; Shariff, A.M.; Kumar, P.; Murugesan, T.: Thermal and physical properties of (choline chloride + urea + l-arginine) deep eutectic solvents. J. Mol. Liq. 218, 301–308 (2016)

    Article  Google Scholar 

  46. 46.

    Hammond, O.S.; Bowron, D.T.; Edler, K.J.: Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem. 18, 2736–2744 (2016)

    Article  Google Scholar 

  47. 47.

    Fredlake, C.P.; Crosthwaite, J.M.; Hert, D.G.; Aki, S.N.V.K.; Brennecke, J.F.: Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 49, 954–964 (2004)

    Article  Google Scholar 

  48. 48.

    Kanakubo, M.; Hiejima, Y.; Minami, K.; Aizawa, T.; Nanjo, H.: Melting point depression of ionic liquids confined in nanospaces. Chem. Commun. 1828–1830 (2006)

  49. 49.

    López, T.; Álvarez, M.; Ramírez, P.; Jardón, G.; López, M.; Rodriguez, G.; Ortiz, I.; Novaro, O.: Sol–gel silica matrix as reservoir for controlled release of paracetamol: characterization and kinetic analysis. J. Encapsul. Adsorpt. Sci. 6, 47 (2016)

    Article  Google Scholar 

  50. 50.

    Webb, P.A.; Orr, C.: Analytical methods in fine particles technology. ed. Micromeritics, USA. 17 (1997)

  51. 51.

    Zhang, J.; Ma, Y.; Shi, F.; Liu, L.; Deng, Y.: Room temperature ionic liquids as templates in the synthesis of mesoporous silica via a sol–gel method. Microporous Mesoporous Mater. 119, 97–103 (2009)

    Article  Google Scholar 

  52. 52.

    Roque-Malherbe, R.; Polanco-Estrella, R.; Marquez-Linares, F.: Study of the interaction between silica surfaces and the carbon dioxide molecule. J. Phys. Chem. C 114, 17773–17787 (2010)

    Article  Google Scholar 

  53. 53.

    Bacsik, Z.; Ahlsten, N.; Ziadi, A.; Zhao, G.; Garcia-Bennett, A.E.; Martín-Matute, B.; Hedin, N.: Mechanisms and kinetics for sorption of CO2 on bicontinuous mesoporous silica modified with n-propylamine. Langmuir 27, 11118–11128 (2011)

    Article  Google Scholar 

  54. 54.

    Kauffman, K.L.; Culp, J.T.; Goodman, A.; Matranga, C.: FT-IR study of CO2 adsorption in a dynamic copper (II) benzoate–pyrazine host with CO2–CO2 interactions in the adsorbed state. J. Phys. Chem. C 115, 1857–1866 (2011)

    Article  Google Scholar 

  55. 55.

    McCann, N.; Phan, D.; Wang, X.; Conway, W.; Burns, R.; Attalla, M.; Puxty, G.; Maeder, M.: Kinetics and mechanism of carbamate formation from CO2(aq), carbonate species, and monoethanolamine in aqueous solution. J. Phys. Chem. A 113, 5022–5029 (2009)

    Article  Google Scholar 

  56. 56.

    Aresta, M.; Dibenedetto, A.; Quaranta, E.: Reaction Mechanisms in Carbon Dioxide Conversion. Springer, Berlin, Heidelberg (2016)

    Google Scholar 

  57. 57.

    Hahn, M.W.; Jelic, J.; Berger, E.; Reuter, K.; Jentys, A.; Lercher, J.A.: Role of amine functionality for CO2 chemisorption on silica. J. Phys. Chem. B 120, 1988–1995 (2016)

    Article  Google Scholar 

  58. 58.

    Robinson, K.; McCluskey, A.; Attalla, M.I.: An ATR-FTIR study on the effect of molecular structural variations on the CO2 absorption characteristics of heterocyclic amines, part II. ChemPhysChem. 13, 2331–2341 (2012)

    Article  Google Scholar 

  59. 59.

    Tahari, M.N.A.; Hakim, A.; Hisham, M.W.M.; Yarmo, M.A.: Modification of porous materials by saturated fatty amine as CO2 capturer. Int. J. Chem. Eng. Appl. 6, 395 (2015)

    Google Scholar 

  60. 60.

    Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D.: Handbook of X-ray photoelectron spectroscopy, edited by J. Chastain (Perkin-Elmer, Eden Prairie, MN, 1992). 118 (1992)

  61. 61.

    Benítez, J.J.; San-Miguel, M.A.; Domínguez-Meister, S.; Heredia-Guerrero, J.A.; Salmeron, M.: Structure and chemical state of octadecylamine self-assembled monolayers on mica. J. Phys. Chem. C 115, 19716–19723 (2011)

    Article  Google Scholar 

  62. 62.

    Khader, M.M.; Al-Marri, M.J.; Ali, S.; Qi, G.; Giannelis, E.P.: Adsorption of CO2 on polyethyleneimine 10 k—mesoporous silica sorbent: XPS and TGA studies. Am. J. Anal. Chem. 6, 274 (2015)

    Article  Google Scholar 

  63. 63.

    Zelenak, V.; Halamova, D.; Gaberova, L.; Bloch, E.; Llewellyn, P.: Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties. Microporous Mesoporous Mater. 116, 358–364 (2008)

    Article  Google Scholar 

  64. 64.

    Dutcher, B.; Fan, M.; Russell, A.G.: Amine-based CO2 capture technology development from the beginning of 2013—a review. ACS Appl. Mater. Interfaces 7, 2137–2148 (2015)

    Article  Google Scholar 

  65. 65.

    Tahari, M.N.A.; Yarmo, M.A.: Adsorption of CO2 on silica dioxide catalyst impregnated with various alkylamine. In: AIP Conference Proceedings, pp. 334–341. AIP (2014)

  66. 66.

    Li, W.; Zhang, Z.; Han, B.; Hu, S.; Song, J.; Xie, Y.; Zhou, X.: Switching the basicity of ionic liquids by CO2. Green Chem. 10, 1142–1145 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Universiti Kebangsaan Malaysia (UKM) for funding this project under research Grants of 03-01-02-SF1115 and FRGS/1/2017/STG01/UKM/02/5, Polymer Research Centre (PORCE) for technical support and Centre for Research and Instrumentation Management (CRIM) for the instrument facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rizafizah Othaman.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghazali, Z., Yarmo, M.A., Hassan, N.H. et al. New Green Adsorbent for Capturing Carbon Dioxide by Choline Chloride:Urea-Confined Nanoporous Silica. Arab J Sci Eng 45, 4621–4634 (2020). https://doi.org/10.1007/s13369-019-04306-7

Download citation

Keywords

  • Deep eutectic solvent
  • Choline chloride–urea
  • Carbon dioxide
  • Adsorption
  • Sol–gel